• Title/Summary/Keyword: soil microbe

Search Result 56, Processing Time 0.029 seconds

토착 미생물의 활성에 의한 유류오염 토양 정화 실험

  • 이지훈;이종규;최상진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.199-202
    • /
    • 2002
  • Many methods have been developed for the remediation of contaminated soil and groundwater. Among those technologies, in-situ bioremediation is most likely to be cost-effective method for petroleum hydrocarbon contamination. But the in-situ bioremediation can require more time to remediate hydrocarbon-contaminated soil and groundwater than other methods. Therefore we intended to save time of in-situ bioremediation using a biological additive to activate indigenous microbes in soil. The additive, 'Inipol EAP 22' stimulates the growth of specific flora, significantly accelerating the speed at which hydrocarbons are biodegraded. And it hans been tested in accordance with protocol approved by the USEPA and is registered on the National Contingency Plan Product Schedule List. In the experiment, three soil samples contaminated with fuel oil were prepared in the same concentration. Inipol EAP 22 was not added to one sample and was added to the other two samples with 5% and 10% of hydrocarbon by weight respectively. And $CO_2$gas derived from bacterial respiration was analyzed in each samples for 15 days. As a result, 145% and 153% of $CO_2$ evolution (microbial respiration) against the sample without 'Inipol EAP 22' occurred in samples with 'Inipol EAP 22' addition of 5% and 10%, respectively

  • PDF

Population Variations of Cylindrocarpon destructans Causing Root Rot of Ginseng and Soil Microbes in the Soil with Various Moisture Contents (토양수분 함량에 따른 인삼 뿌리썩음병균 Cylindrocarpon destructans 및 토양미생물의 밀도 변화)

  • 박규진;유연현;오승환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.100-104
    • /
    • 1997
  • Influence of the moisture content in soils was examined on population variations of soil microbes, including Cylindrocarpon destructans causing root rot of ginseng, in vivo and under the field condition. Fungal populations decreased in soils treated with various moisture contents in vivo as days after the treatment in creased, but there was not a significant difference in the population among other treatments except 135% moisture content (flooding) at 15 weeks after the treatment. In flooded soils populations of total fungi and C. destructans were reduced to 1/10 and 1/50 of initial populations, respectively. There was, however, a little difference in the population of total bacteria or Actinomycetes between before and at 15 weeks after flooding. On the other hand, population variations of bacteria and Actinomycetes were much greater than those of fungi at different intervals after the moisture treatment. Variations of microbial populations in flooded soils under the field condition were similar to those in vivo. Especially, populations of Fusarium and pectolytic bacteria in flooded soils were reduced to 1/100 of populations in nonflooded soils at 170 days after treatment.

  • PDF

Studies on characteristic analysis of Streptomyces fradiae isolated from soil and effect against to Salmonella gallinarum (토양에서 분리한 Streptomyces fradiae의 특성 분석 및 Salmonella gallinarum 항균효과에 관한 연구)

  • Kim, Hong-Jib
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.2
    • /
    • pp.135-139
    • /
    • 2009
  • Streptomyces (S.) fradiae is a microbe with broad-spectrum antimicrobial activity, isolated from soil. In the present study, antibacterial effects of S. fradiaea against Salmonella (S.) gallinarum was determined. S. fradiae inhibited growing of S. gallinarum in Luria-Bertani media agar. Moreover, ingestion of S. fradiae markedly inhibited mortality of chickens experimentally infected with S. gallinarum. There is no side effect by S. fradiaeon, in safety of chickens and antibiotic material residues in chicken meat. Taken together, S. fradiae have the antibacterial effects against S. gallinarum. Therefore, we concluded that S. fradiae might be a good microbial candidate for treatment or control of fowl typhoid in chickens.

Response of Microbe to Chemical Properties from Orchard Soil in Gyeongnam Province (경남지역 과수원 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.236-241
    • /
    • 2011
  • Soil microbial diversity was responsible for a strong effect on the chemical properties of orchard soils. This study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in orchard soils in Gyeongnam Province. The average nutrients in the orchard soils were 2.6 times for available phosphorous, 2.3 times for exchangeable potassium and 1.3 times for exchangeable calcium higher compared to recommend concentrations in the orchard soils. Contents of available phosphorous and organic matter in the inclined piedmont soils were higher than those in the other topographical soils (p<0.05). Populations of fungi and fluorescence Pseudomonas sp. in the silt loam soils were significantly higher than those in the sandy loam soils (p<0.05). In principal component analysis of chemical properties and microbial populations in the upland soils, our findings suggested that population of bacteria should be considered as potential factor responsible for the clear orchard soils differentiation. The soil organic matter was significantly negative correlation with population of bacteria whereas was positive correlation with population of fungi in orchard soils.

Effects of Organic Matter Application on Soil Microbial Community in a Newly Reclaimed Soil (신규 유기농경지 토양의 유기물 공급이 토양 미생물군집에 미치는 영향)

  • An, Nan-Hee;Ok, Jung-Hun;Cho, Jung-Lai;Shin, Jae-Hoon;Nam, Hong-Sik;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.767-779
    • /
    • 2015
  • soil microbial activities and diversities in a newly reclaimed soil. Soil chemical properties, population of microbe, microbial biomass, and properties of microbial community were investigated under 4 different treatment (animal manure compost+green manure, chemical fertilizer, and without fertilizer). The experiment was conducted for 3 years from 2012 to 2014. The most of chemical properties in the animal manure compost+green manure treatment were increased continually compare to chemical fertilizer and without fertilizer. The population of bacteria and fungi were higher in the animal manure compost+green manure treatment, however, there was no difference on actinomyces. Soil microbial biomass C content was higher in the animal manure compost+green manure treatment than in chemical fertilizer and without fertilizer. Biolog examination showed that catabolic diversities of bacterial communities were higher in the treatment of animal manure compost+green manure. It was showed that principle component analysis of the Biolog data differentiated the organic matter amended soils from NPK and control. These results indicated that application of animal manure compost+green manure had a beneficial effect on soil microbial properties.

Development qRT-PCR Protocol to Predict Strawberry Fusarium Wilt Occurrence

  • Hong, Sung Won;Kim, Da-Ran;Kim, Ji Su;Cho, Gyeongjun;Jeon, Chang Wook;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • Strawberry Fusarium wilt disease, caused by Fusarium oxysporum f. sp. fragariae, is the most devastating disease in strawberry production. The pathogen produces chlamydospores which tolerate against harsh environment, fungicide and survive for decades in soil. Development of detection and quantification techniques are regarded significantly in many soilborne pathogens to prevent damage from diseases. In this study, we improved specific-quantitative primers for F. oxysporum f. sp. fragariae to reveal correlation between the pathogen density and the disease severity. Standard curve $r^2$ value of the specific-quantitative primers for qRT-PCR and meting curve were over 0.99 and $80.5^{\circ}C$, respectively. Over pathogen $10^5cfu/g$ of soil was required to cause the disease in both lab and field conditions. With the minimum density to develop the wilt disease, the pathogen affected near 60% in nursery plantation. A biological control microbe agent and soil solarization reduced the pathogen population 2-fold and 1.5-fold in soil, respectively. The developed F. oxysporum f. sp. fragariae specific qRT-PCR protocol may contribute to evaluating soil healthiness and appropriate decision making to control the disease.

Stabilization Mechanism for Sands Treated with Organic Acids from Laboratory Tests (유기산 재료를 이용한 사질토의 안정화 메커니즘에 관한 연구)

  • Ki, Jungsu;Yee, Eric;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • The field of ground amelioration, many construction methods have been developed more prosperously up to now, but even now, the majority focuses on the improvement of ground strength. And they could not suggest concrete solutions to the occurrence of environmental issues. To address this problem, soil improvement methods employing organic acid materials have recently been developed as eco-friendly technologies for increasing the soil strength, but details regarding the basic stabilization mechanism are not known yet. Against this background, this research was conducted to examine the soil stabilization mechanism; for this purpose, unconfined compressive strength and pH tests were conducted by using an improved eco-friendly organic acid material. The test results revealed that the samples processed with the organic acid showed a considerable increase in the unconfined compressive strength over time as compared to the strength of the samples that were processed without the organic acid. It was also confirmed that the organic acid material promoted microbial breeding and improved the soil structure by reducing the volume of the voids in the soil. Therefore, the sustainable development of this method needs to be analysed more in the future.

Optimum loading capacity and nitrification characteristics of the swine wastewater treatment process using soil microbe (토양미생물을 이용한 축산폐수 처리공정의 적정부하율과 질산화공정의 특성)

  • Ha, Jun-Soo;Shin, Nam-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.183-187
    • /
    • 2000
  • Removal rate of nitrogen compound containing swine wastewater was 97 percent in case of high loading rate treatment of swine wastewater at studies for process development using soil microorganism. Minimum hydraulic retention time(HRT) for nitrification process was 11 days and solid retention time was 25 days. Nitrification was between 5 and 11 days but this time $NO_2-N$ was remained. Reactor condition was injured to nitrosomonas according to pH, $NO_2\;^--N$, and $NH_3\;^--N$ concentration but this condition was recover to pH controlling.

  • PDF

Laccase- and Peroxidase-Free Tyrosinase Production by Isolated Microbial Strain

  • Sambasiva Rao, K.R.S.;Tripathy, N.K.;Mahalaxmi, Y.;Prakasham, R.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2012
  • Laccase- and peroxidase-free tyrosinase has commercial importance in the production of L-3, 4-dihydroxyphenylalanine (L-DOPA), which is mainly used in the treatment of Parkinson's disease. In the present study, isolation of an actinomycetes microbial strain capable of producing only tyrosinase is reported. Among all soil isolates, three individual colonies revealed black color around the colony in the presence of tyrosine. Further screening for laccase and peroxidase activities using syringaldazine denoted that one of the isolates, designated as RSP-T1, is laccase and peroxidase negative and produces only tyrosinase. The microbe was authenticated as Streptomyces antibioticus based on 16S ribotyping. Effective growth of this isolate was noticed with the use of medium (pH 5.5) containing casein acid hydrolysate (10.0 g/l), $K_2HPO_4$ (5.0 g/l), $MgSO_4$ (0.25 g/l), L-tyrosine (1.0 g/l), and agar (15 g/l). The scanning electron micrograph depicted that the microbe is highly branched and filamentous in nature. The enzyme production was positively regulated in the presence of copper sulfate. The impact of different fermentation parameters on tyrosinase production depicted that the maximized enzyme titer values were observed when this isolate was grown at 6.5 pH and at $30^{\circ}C$ temperature under agitated conditions (220 rpm). Among all the studied physiological parameters, agitation played a significant role on tyrosinase production. Upon optimization of the parameters, the yield of tyrosinase was improved more than 100% compared with the initial yield.

The Characteristics of Antitumor Agent Isolated from Streptomyces sp.409 (Streptomyces sp.409 에서 분리한 항암활성 물질의 특징)

  • 장영수
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.478-487
    • /
    • 2000
  • This study was carried out to find new anti-tumor agent producing microbe and to characterize the anti-tumor agent produced from the microbe. Purified compound that has a high cytotoxicity against tumor cell-lines could be obtained from the broth culture filtrates of Streptomyces sp.409 strain isolated from soil in Korea. The in vitro cytotoxicity the in vivo evaluation of acute toxicity the safety assessment of the anti-tumor compounds and the taxonomic characteristics of the anti-tumor agent were measured. The antitumor compound 1 and 2 were obtained from the broth culture filtrates of Streptomyces sp.409 strain. The cytotoxicity of the compound 1 against tumor cell-line P388D$_1$ showed almost 4.5 times higher than that of adriamycin. However in the cytotoxicity against normal cell line Vero E6, adriamycin showed adversely 4 times higher than the compound 1 ($IC_{50}$/ value: 228.7 $\mu\textrm{g}$/$m\ell$). In comparison study with compound 1 and compound 2 in the in vitro cytotoxin productivity against tumor cell lines, $IC_{50}$/ value of the compound 1 was 0.25 $\mu\textrm{g}$/$m\ell$ in tumor cell line P388D$_1$and 0.53 $\mu\textrm{g}$/$m\ell$ in tumor cell-line L1210, and that of the compound 2 was 7.18 $\mu\textrm{g}$/$m\ell$ and 35.71 $\mu\textrm{g}$/$m\ell$, respectively; LD$_{50}$ value of the compound 1 in the in vivo acute toxicity in mice was 22.62 $\mu\textrm{g}$/kg body weight. These results suggest that compound 1 purified from Streptomyces sp. 409 has anti-tumor activity and will be developed as an anti-tumor drug.g.

  • PDF