• Title/Summary/Keyword: soil materials

Search Result 2,191, Processing Time 0.035 seconds

Machine learning-based analysis and prediction model on the strengthening mechanism of biopolymer-based soil treatment

  • Haejin Lee;Jaemin Lee;Seunghwa Ryu;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.381-390
    • /
    • 2024
  • The introduction of bio-based materials has been recommended in the geotechnical engineering field to reduce environmental pollutants such as heavy metals and greenhouse gases. However, bio-treated soil methods face limitations in field application due to short research periods and insufficient verification of engineering performance, especially when compared to conventional materials like cement. Therefore, this study aimed to develop a machine learning model for predicting the unconfined compressive strength, a representative soil property, of biopolymer-based soil treatment (BPST). Four machine learning algorithms were compared to determine a suitable model, including linear regression (LR), support vector regression (SVR), random forest (RF), and neural network (NN). Except for LR, the SVR, RF, and NN algorithms exhibited high predictive performance with an R2 value of 0.98 or higher. The permutation feature importance technique was used to identify the main factors affecting the strength enhancement of BPST. The results indicated that the unconfined compressive strength of BPST is affected by mean particle size, followed by biopolymer content and water content. With a reliable prediction model, the proposed model can present guidelines prior to laboratory testing and field application, thereby saving a significant amount of time and money.

A Study on the Reduction of Soil Particle Dissociation Rate by the Root of 'Salix Gracilistyla' (갯버들 근계의 토양 입자 해리 억제효과에 관한 연구)

  • Lee, Chun-Seok;Park, Myung-Ahn;Kang, Ho-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.69-78
    • /
    • 2003
  • The main purpose of this study was to verify the shore margin protection effect of the root system of Salix gracilistyla Miq. developed from direct sticking cuttings on wetland, focusing on the effect of the root system reducing soil particle dissociation rate in water. The soil dissociation rate was examined through slaking tests with cylindric pure soil column at maximum particle density and the same size column of root reinforced soil. The dry weight of remained soil was measured after 5, 10, 15, 30minutes and 1, 6, 12, 24, 48hours inundation. As results, the soil particles began to dissociate severely at 10 minutes and only 10% of soil particles were left after 25minutes inundation. The stable slope angle of pure soil was $36^{\circ}$after 24 hours. On the other hand, the columns of root reinforced soil were stable even after 24hours, being dissociated only 7.2% of soil particles. So, it was revealed that the root system was very effective materials protecting more than 80% of soil particle from dissociation in inundation.

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

A Study on Green Roofing Applied Artificial Soil Containing Recycled Materials - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio - (재활용재료를 포함한 옥상녹화용 인공토양의 성능평가 - 토양배합비가 자생식물 생육에 미치는 영향을 중심으로 -)

  • Kim, Kyung-Hoon;Koh, Jeung-Hyun;Kim, Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.5
    • /
    • pp.119-130
    • /
    • 2013
  • The objective of this study was to analyze an availability of green roof soil based on the bottom ash soil and compost using sludge derived from food factory as comparing and analysing the growth of native plants. Analysing the physical properties and chemical resistance of 12 different type mixing soils which is mainly used in green roof, selected 4 types of soil, experiments were conducted to compare plant growth. The growth status of the plant showed the most superior of the soil 13(control), next soil 9(Pearlite : Bottom Ash : Compost = 20 : 60 : 20) and soil 10(Pearlite : Zeolite : Compost = 60 : 20 : 20) This result showed that native plants grow well in the soil based on the bottom ash and compost using sludge derived from food factory, and this soil type is determined that is available the green roof soil.

Stabilization of cement-soil utilizing microbially induced carbonate precipitation

  • Shuang Li;Ming Huang;Mingjuan Cui;Peng Lin;Liudi Xu;Kai Xu
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.95-108
    • /
    • 2023
  • Soft soil ground is a crucial factor limiting the development of the construction of transportation infrastructure in coastal areas. Soft soil is characterized by low strength, low permeability and high compressibility. However, the ordinary treatment method uses Portland cement to solidify the soft soil, which has low early strength and requires a long curing time. Microbially induced carbonate precipitation (MICP) is an emerging method to address geo-environmental problems associated with geotechnical materials. In this study, a method of bio-cementitious mortars consisting of MICP and cement was proposed to stabilize the soft soil. A series of laboratory tests were conducted on MICP-treated and cement-MICP-treated (C-MICP-treated) soft soils to improve mechanical properties. Microscale observations were also undertaken to reveal the underlying mechanism of cement-soil treated by MICP. The results showed that cohesion and internal friction angles of MICP-treated soft soil were greater than those of remolded soft soil. The UCS, elastic modulus and toughness of C-MICP-treated soft soil with high moisture content (50%, 60%, 70%, 80%) were improved compared to traditional cement-soil. A remarkable difference was observed that the MICP process mainly played a role in the early curing stage (i.e., within 14 days) while cement hydration continued during the whole process. Micro-characterization revealed that the calcium carbonate filling the pores enhanced the soft soil.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

Effect of Mulching Material on the Growth and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) in Protected Cultivation (멀칭재료가 시설참외의 생육과 품질에 미치는 영향)

  • Su Gon Bae;Yong Seub Shin;Il Kweon Yeon;Han Woo Do
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.237-243
    • /
    • 2001
  • The experiment was conducted to investigate the effect of different mulching materials on the growth and quality of oriental melon in protected cultivation. Soil temperature, plant growth and fruit quality were affected by different mulching materials, clear polyethylene (P.E.) film (control), clear inset between black P.E. film, green P.E. film. and recycled ethylene vinyl acetate (E.V.A.) film. The highest night soil temperature was at 20 cm depth under green P.E. film, but was at 5 cm depth under other materials. Difference of soil temperature as affected by mulching materials decreased with increasing soil depth. Plant height, number of nodes, leaf area index (LAI), crop growth rate (CGR), and relative growth rate (RGR) at 30 days after transplanting were significantly greater in the recycled E.V.A. film treatment than in the other treatments. Fresh weight of weeds growth under the mulching materials was not affected by mulching material at 30 days after transplanting. However, it was the greatest under clear P.E. film mulching at 90 days after transplanting. Harvesting time of recycled E.V.A. film was 2 days earlier than that of clear P.E. film. Difference in fruit weight and length, and soluble solid content were not affected by the mulching materials. Marketable yield was 2,426 kg.10a$^{-1}$ in recycled E.V.A. film treatment, which was 6% greater than in clear P.E. film treatment.

  • PDF

Spore Germination of Some Fungi under Different Soil Conditions in Relation to Fungistasis (토양(土壤) 조건(條件)에 따른 수종(數種) 균류(菌類)의 포자(胞子) 발아(發芽)와 정균현상(靜菌現像))

  • Lee, Min-Woong;Shin, Hyun-Sung;Choi, Hae-Jung
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.195-201
    • /
    • 1985
  • Numbers of total bacteria and fungal propagules were highly populated in the soil of diseased plot in Gumsan, whereas numbers of actinomycetes were high in the soil of healthy plot in Goesan. In microbial fluctuation of different soil conditions four weeks after amended with various plant materials, bacteria were decreased in the soil amended with various plant materials as compared with non-amended soil except for Goesan. On the contrary, numbers of fungal propagules were increased amended with onion and potato stalk in two soils at different conditions, and also the propagules were enhanced in the soil amended with various plant materials in general. Higher numbers of bacteria and fungal propagules were observed in the diseased replanted plot in general, but germination rate of fungal spores relatively reversed against the microbial population. Alternaria panax was not affected much in their germination by natural soil condition, while Fusarium spp. were affected in their germination by natural soil. Natural soil showed a fungistatic effect against four fungal spores.

  • PDF

Study on the Improvement of Soil for High Efficient and Sustainable Agriculture-II Changes of Population of Soil Microorganisms in the Fertilized Soil with Organic Materials (지속적 농업을 위한 고성능토양의 개발 연구-II 유기질비료 시용에 따른 토양미생물상의 변화)

  • Yoo, Sung-Joon;Chang, Ki-Woon;Whang, Kyung-Sook
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.457-464
    • /
    • 1998
  • For investigating the effect of amount of applied fertilizer with pig and chicken manures in the field, the number of soil bacteria were counted on the full strength conventional nutrient broth (NB) medium and its 100-fold dilution (DNB) medium. From the control soil samples without organic amendments, the number of bacteria on DNB medium was 5 to 10 times higher than that on NB medium. However, population density on NB medium was higher than on DNB medium from the treated soil with 60 and 120 Mg/㏊ for 3 years. Most of isolates from DNB plates did not grow on the NB plates. There were only grown on the 100-fold dilution medium, so it was called as DNB organisms. The DNB organisms were occupied as dominant group over 60% fo isolates in control soil. However, their occupation rates were rapidly decreased in the treatment soil with pig and chicken manures above 60 and 120 Mg per ha. These DNB organisms (oligotrophs) were significantly low population desities in the treatment soil with organic materials.

  • PDF