• Title/Summary/Keyword: soil grouting

Search Result 218, Processing Time 0.028 seconds

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.

Case for Detection and Prevention of Inflow Section for Contaminant through Annular Space in Borehole, Jeju Island (제주도 관정 공벽 내 오염물질 유입 구간 탐지 및 차단 사례)

  • Song, Sung-Ho;Hwangbo, Dongjun;Kim, Jin-Sung;Yang, Won-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Most wells developed in Jeju island before the enactment of the Groundwater Management Ordinance in 2002 are vulnerable to aquifer contamination due to inflow of upper groundwater having the high concentration of nitrate nitrogen, likely due to incomplete grouting in upper section of the wells. Although these wells require entire reinstallation, it is often necessary to rehabilitate the existing wells due to various constraints. Therefore, to identified the inflow section of contaminants, the thermal level sensor (TLS) technique was firstly applied for three wells, which enables to monitor temperature variations in every 50 cm depth. Then, the grouting material was injected to the upper section to prevent the inflow of upper contaminated groundwater into the entire aquifer. By applying TLS technique, it was found that the temperature deviations in the upper groundwater inflow section decreased sharply. Moreover, both the change in the concentration of nitrate nitrogen in the rainy/dry seasons and the average concentrations were found to decrease rapidly after grouting material injection. Consequently, the application of TLS proposed in the study turned out to be appropriate to prevent aquifer contamination.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

A new geopolymeric grout blended completely weathered granite with blast-furnace slag

  • Zhang, Jian;Li, Shucai;Li, Zhaofeng;Li, Hengtian;Du, Junqi;Gao, Yifan;Liu, Chao;Qi, Yanhai;Wang, Wenlong
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.537-545
    • /
    • 2020
  • In order to reduce the usage of cement slurry in grouting engineering and consume the tunnel excavation waste soil, a new geopolymeric grouting material (GGM) was prepared by combine completely weathered granite (CWG) and blast-furnace slag (BFS), which can be applied to in-situ grouting treatment of completely weathered granite strata. The results showed CWG could participate in the geopolymerization process, and GGM slurry has the characteristics of short setting time, high flowability, low viscosity, high stone rate and high mechanical strength, and a design method of grouting pressure based on viscosity evolution was proposed. By adjusted the content of completely weathered granite and alkali activator concentration, the setting time of GGM were ranged from 5 to 30 minutes, the flowability was more than 23.5 cm, the stone rate was higher than 90%, the compressive strength of 28 days were 7.8-16.9 MPa, the porosity were below 30%. This provides a novel grouting treatment and utilizing excavated soil of tunnels in the similar strata.

Laboratory tests for studying the performance of grouted micro-fine cement

  • Aflaki, Esmael;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In geological engineering, grouting with Portland cement is a common technique for ground improvement, during which micro-fine cement is applied as a slurry, such that it intrudes into soil voids and decreases soil porosity. To determine the utility and behavior of cements with different Blaine values (index of cement particle fineness) for stabilization of fine sand, non-destructive and destructive tests were employed, such as laser-ray determination of grain size distribution, and sedimentation, permeability, and compressive strength tests. The results of the experimental study demonstrated a suitable mix design for the upper and lower regions of the cement-grading curve that are important for grouting and stabilization. Increasing the fineness of the cement decreased the permeability and increased the compressive strength of grouted sand samples considerably after two weeks. Moreover, relative to finer (higher Blaine value) or coarser (lower Blaine value) cements, cement with a Blaine value of $5,100cm^2/g$ was optimal for void reduction in a grouted soil mass. Overall, study results indicate that cement with an optimum Blaine value can be used to satisfy the designed geotechnical criteria.

Case Studies on Ground Improvement by High Pressure Jet Grouting(I) Effect in the Improvement of Bearing Capacity for Foundation Ground (고압분사주입공법에 의한 지반개량사례연구(I) -구조물 기초지반의 지지력증대효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Yu, Seung-Gyeong
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.33-46
    • /
    • 1996
  • When structures are constructed in ground with poor bearing capacity, deformation of ground may induce foundation settlements and cracks of structures. Recently, high pressure jet grouting is widely used to improve the engineering properties of such foundation. Sometimes, the grouting columns are built in the ground by jet grouting method. They are used as in -situ piles to increase the bearing capacity of existing foundation. In this paper, as for the grouting columns built in ground by high pressure jet grouting with double tube rod, the effects on reinforcement and bearing capacity of ground are investigated. A series of laboratory tests has been performed on the specimens sampled from the grouting columns and a pile load test has been performed on a grouting column. The test results show that high pressure jet grouting has a sufficient effect on reinforcement of ground and restraint of settlement of structure.

  • PDF

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.

Shear Behavior between Ground and Soil-Nailing (지반과 쏘일네일링 사이의 전단거동에 관한 연구)

  • Seo, Hyung-Joon;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.5-16
    • /
    • 2014
  • Soil-nailing has two main resistance factors: skin friction between ground and grouting; and tension load of reinforced material. These two factors will affect the load-displacement curve when performing soil-nailing pullout tests. The purpose of this paper is to figure out the shear behavior between ground and soil-nailing focusing on the net load-displacement behavior during soil-nailing pullout tests. Firstly, the net load-displacement curve between ground and grouting is estimated theoretically. Then, in-situ pullout load tests are performed on various ground conditions to obtain the load-displacement curve occuring between ground and grouting. Since the measured shear displacement includes elongation of the reinforced material (steel nails), the net load-displacement curve can be obtained by subtracting the elongation magnitude of steels from the measured displacement. It was found that the measured net load-displacement curve matches reasonably well with the theoretically estimated curve.

A Fundamental Properties of Microcement in Earth Concreting (지반보강용 마이크로시멘트의 기초적 특성)

  • 김진춘;최광일;박재용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.217-222
    • /
    • 1994
  • Generally speaking, grouting on the base stabilizes the ground as the aspects of mechanic and engineering properties, with drilling hole at any depth of the earth, and pressuring the cement milk or special chemical grouting material in it. The purpose of grouting on the base is waterproofness and solidification of the ground by earth concreting that the cement milk pass through paticles of soil or crack of rock. This report shows the fundamental properties of microcement compared with those of ordinary portland cement in a point of grouting. It also describes that experimental applications on the treatment of the weathered rock at the constructior of Taegu subway and Boryong earth filled dam site, south of chungchung province, resulted in success.

  • PDF