• Title/Summary/Keyword: soil forming factor

Search Result 15, Processing Time 0.028 seconds

Composition and Genesis of Volcanic Ash Soils in Jeju Island I. Physico-Chemical and Macro-Micromorphological Properties (제주도 화산회사인의 특성 및 생성에 관한 연구. I. 이화학 및 형태학적 특성)

  • ;George Stoops
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 1988
  • The effect of soil forming factors on the pedogenesis of basaltic volcanic ash soils and the influence of allophane material on soil properties have been investigated on 5 chronosequence soils situated from at the near sea coast up to the foot slope of Mt. Halla in Jeju Island. Time seems to be the important soil forming factor which today differentiates soil of the Island. Songag and Donghong soils developed in lower elevations are older and somewhat less influenced by ash shower. However, soils developed at higher elevations, Pyeongdae and Heugag, are rather younger and strongly influence by the ash. It is also proved that the parent materials are very heterogeneous. They mainly are basaltic with some contamination of acidic volcanic ashes and continental aeolian deposits where a considerable amount of quartz encountered in most soils studied. Many physico-chemical properties of soil, such NaF pH, phosphate sorption power, pH and extractable acidity are parameters to differentiate andepts and non-andeptic soils.

  • PDF

A Brief Review of Soil Systematics in Germany (독일 토양분류체계 소개)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Kim, Seok-Cheol;Jang, Byoung-Choon;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • Due to diverse soil-forming environments and different purposes of the soil classification, numerous soil classification systems have been developed worldwide. The World Reference Base for Soil Resources (WRB) and the Soil Taxonomy of the United States are well-known in Korea. However, the German Soil Systematics based on somewhat different principles from the two former systems is little-known. The objective of this paper is therefore to give a short overview of the principles of the German Soil Systematics. The German Soil Systematics consists of a six-level hierarchical structure which comprises soil divisions, soil classes, soil types, soil subtypes, soil varieties, and soil subvarieties. Soils in Germany are firstly classified into one of four soil divisions according to the soil moist regime: terrestrial soils, semi-terrestrial soils, semi-subhydric/subhydric soils, and peats. Terrestrial soils are subdivided into 13 soil classes based on the stage of soil formation and the horizon differentiation. Semi-terrestrial soils are differentiated into four classes regarding the source of soil moist: groundwater, freshwater, saltwater, and seaside. Semi-subhydric/subhydric soils are subdivided into two classes: semi-subhydric and subhydric soils. Peats are classified into two classes of natural and anthropogenic origins. Classes can be compared to orders of the U.S. Taxonomy. Classes are subdivided into 29 soil types with regard to soil forming-processes for terrestrial soils, into 17 types with regard to the soil formation for semi-terrestrial soils, into five types with regard to the content of organic matter for semi-subhydric/subhydric soils, and also into five types with regard to peat-forming processes for peats. The soil mapping units in Germany are types, which can be additionally subdivided into ca. 220 subtypes, several thousands of varieties and subvarieties using detailed nuances of morphologic features of soil profile. Soil types can be compared to great groups of the U.S. Taxonomy.

Spatial Distribution of Major Soil Types in Korea and an Assessment of Soil Predictability Using Soil Forming Factors (한국 주요 토양유형의 공간적 분포와 토양형성요인을 이용한 예측가능성 평가)

  • Park, Soo-Jin;Sonn, Yeon-Kyu;Hong, Suk-Young;Park, Chan-Won;Zhang, Yong-Seon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.95-118
    • /
    • 2010
  • This study aims to investigate the spatial distribution of major soil types in Korea, and to assess the ability to predict soil distribution using environmental variables. A classification tree method was used to assess soil predictability. While the great soil groups can give more intuitive understandings on their spatial distributions, its predictability using environmental factors is much lower than that of the great groups. The most important factor to determine the spatial distribution of major soil types is the geomorphological characteristic of Korea that shows distinctive morphological difference between mountains and plains. Spatial distribution of climatic variables and catenary soil sequence along slopes play additional roles in determining the distribution of soil types. The classification tree models resulted in 35-75% of prediction accuracy, depends on the combination of different environmental variables brought in the models. While geomorphological variables are the best predictors for the great groups, climatic variables perform better for the great soil groups.

The Integrated Assessment Model for the Conservation of Natural Environment - Focused on Site Selection for the National Trust - (자연환경 보전을 위한 통합 평가모형 - 내셔널 트러스트 후보지 선정을 중심으로 -)

  • Jung, Sung-Gwan;You, Ju-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.2
    • /
    • pp.87-98
    • /
    • 2003
  • The main purpose of this study is to propose the integrated assessment model for the rational and effective selection of proposed sites in National Trust (NT) and conserve the ruined natural environment by excessive land development. The results of this study are as follows; 1) The specialists thought that rare and endangered species were very important in plant and animal, in case of landscape and environment, naturality and water quality were too important. 2) In the result of the correlation measure on the indicator of assessment, 'erosion of soil'and 'air pollutant'was highly correlative. Secondly, 'suspended solids' and 'erosion of soil'was high correlation. 3) In the result of forming the factors into the integrated indicators, they were classified into conditional, stable, valuable and potential factors and the purpose of this formation is to evaluate proposed sites in NT objectively and rationally with organic assessment. 4) In the integrated assessment model, the degree of explanation was observed approximately 36.4% and the important factor was the conditional factor, but we have to consider all factors for the effective and objective assessment. Therefore we organically have to apply and use them for the assessment of proposed sites in NT. It turns out to offer raw data on the land conservation and carry out the role of the instrument of measurement. As for future directions, the follow are proposed: 1) adaptation of real proposed site, 2) verification of effect and problem, 3) practical survey for diverse types as mountain, coast and inland.

Holocene Paleosols of the Upo Wetland, Korea

  • Nahm, Wook-Hyun;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.167-168
    • /
    • 2003
  • The Upo wetland, the largest natural wetland in Korea, is located in Changnyeong-gun, Gyeongsannam Province ($35^{\circ}33'$ N, $128^{\circ}25'$ E), and 70 km upstream from the Nakdong River estuary. Unlike most other Korean wetlands that have been destroyed under the name of economic development, the Upo wetland has been able to preserve its precious ecosystem throughout the years. Thanks to increased public awareness about natural wetlands and environmental conservation, the Korean Ministry of Environment designated the Upo wetland an 'Ecological Conservation Area' on July 26th, 1997. On March 2nd of the following year, the Upo wetland (8.54 $\textrm{km}^2$) was designated a 'Protected Wetland' in accordance with the international Ramsar Treaty. A 4.49m long (from 9.73 to 5.24 m in altitude) UP-1 core ($35^{\circ}33'05"N$, $128^{\circ}25'17"E$), recovered in the marginal part of the Upo wetland, is divided into eight buried paleosol units of different ages on the basis of the abundance of color mottles and vertical color variations (Aslan et al., 1998). Radiocarbon datings suggested that the paleosol profile represent the last 5700 years. The entire section of the core was more or less subjected to pedogenetic processes, and shows very weak to moderate soil profile development. These Holocene paleosols are therefore regarded as synsedimentary soils of deluvium (deposits formed by floods) origin (Sycheva et al., 2003). Unit 1 to 5 paleosols are generally silt-rich and exhibit moderate profile development. The boundaries between the units are somewhat distinguishable, but not so clear cut. This is due to variable repeated combination of accumulation, denudation and soil forming processes within various periods. Mottle textures gradually decrease in abundance with increasing clay content in Unit 6, which results in weak profile development. The lower boundary of Unit 6 lies around about 2000 yrBP, the beginning of Subatlantic in Korea (Kim et al., 2001). Abrupt sediment textural change is detected in Unit 7, which is interpreted to indicate the human activities on the Upo wetland. Unit 8 represents the recent soil forming processes. The preliminary results of this ongoing study imply the primary factor for pedogenetic processes is the water table fluctuations related to the sedimentary textures like grain size distributions, and the geomorphological stability of the Upo wetland.o wetland.

  • PDF

A Planting Plan of Buffer-Forest Belts on the Waste Landfill Sites -In the Case of the Boundary Area at the SUDOKWON Landfill Site- (폐기물매립지 완층수림대 식재계획 사례연구 -수도권매립지 경계지역을 대상으로-)

  • Cho, Ju-Hyoung;Choi, Mi-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.58-66
    • /
    • 2002
  • We present a planting plan of the buffer-forest belts created at the boundary area of the waste landfill site which is located in the coastal area of Kyubg-Gi province. In order to form a proper section of ground soil excavated from the sea and a forest which shows a distinction of the vegetation stratification, the planting plan with trees, sub-trees, shrubs, and seedlings (produced at a sprout cultivation place) is devised with an adjustment of planting density. 1. The preparation of mounding is required for planting at a waste landfill site. We first estimate an economical and efficient banking height together with the quantity of soil, and prepare a planting ground with excavated ground soil for the consideration of soil recycling. On the planting ground a banking with a height of 1.5-2m is produced by self-supported soil, playing a role in a salt blocking and an irritation layer of planting. Finally, an additional banking with a height of 2m is produced by qualified vegetation soil, forming a vegetation section with a total height of 6m. 2. Since the planning site is located in the border, the planting area is composed of two regions : one is an inclined face (slope 1 : 3) toward the inside of the landfill site and the other is an inclined face (slope 1 : 4) toward the inland. The buffer planting in the former (latter) region consists of wind break forest (mixed-landscape forest) within a width of less than 35m. 3. Based on the data obtained from the literatures and the investigation of local plants, we choose the 21 plant species (such as Pinus thunbergii, Pinus densiflora, Sorbus alnifolia, Albizzia julibrissin and etc.) and the additinal 7 species which are grown at a sprout cultivation palce of the SUDOKWON landfill site (Rosa rugosa, Quercus acutissima, Prunus armeniaca var. ansu., and etc.). Sub-trees with a height of above 2.5m and seedlings are planted with an interval of $1.5{\times}1.5m$ ($0.45roots/m^2$) and $0.5{\times}0.5m$ ($4roots/m^2$), respectively. Here, both trees exhibit communities planting with more than three rows. Shrubs are planted with $9-16roots/m^2$, depending on their size. Since this case study provides a reference of the planting beds as well as a planting plan at the SUDOKWON landfill site, it is not sufficient for the present plan to be utilized for the formation of buffer-forest belts which are used for the analysis of environmental factor and the reduction of environmental pollutants in the sea waste landfill site. Thus, further studies with the ecological basis are demanded for the environment planting restoration in the sea waste landfill site.

Phylogenetic Diversity of Acidophilic Sporoactinobacteria Isolated from Various Soils

  • Cho, Sung-Heun;Han, Ji-Hye;Seong, Chi-Nam;Kim, Seung-Bum
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.600-606
    • /
    • 2006
  • Spore forming actinobacteria (sporoactinobacteria) isolated from soils with an acidic pH in Pinus thunbergii forests and coal mine waste were subjected to taxonomic characterization. For the isolation of acidophilic actinobacteria, acidified starch casein agar (pH adjusted to 4-5) was used. The numbers of actinobacteria growing in acidic media were between $3.2{\times}10^4$ and $8.0{\times}10^6$ CFU/g soil. Forty three acidophilic actinobacterial strains were isolated and their 16S rDNA sequences were determined. The isolates were divided into eight distinctive phylogenetic clusters within the variation encompassed by the family Streptomycetaceae. Four clusters among them were assigned to the genus Streptacidiphilus, whereas the remaining four were assigned to Streptomyces. The clusters belonging to either Streptomyces or Streptacidiphilus did not form a monophyletic clade. The growth pH profiles indicated that the representative isolates grew best between pH 5 and 6. It is evident from this study that acidity has played a critical role in the differentiation of the family Streptomycetaceae, and also that different mechanisms might have resulted in the evolution of two groups, Streptacidiphilus (strict acidophiles) and neutrotolerant acidophilic Streptomyces. The effect of geographic separation was clearly seen among the Streptacidiphilus isolates, which may be a key factor in speciation of the genus.

Bionomics of the Galls Induced by Nurudea (Homoptera: Aphidoidea) (꽃오배자면충(매미목 : 진딧물상과)의 생태)

  • Lee, Won-Koo
    • The Korean Journal of Soil Zoology
    • /
    • v.9 no.1_2
    • /
    • pp.6-11
    • /
    • 2004
  • Gall development of Nurudea yanoniella on Rhus japonica and emergence of alatae from galls were studied in Jeonju. The galls were formed in late June to late October and slit open in late October 1999. The maximum length and width of galls marked were measured weekly during the period from gall formation to opening. The length and width of galls increased exponentially until mid August. After the 12 September the gall stopped developing Fundatrices (the first generation within the gall) began to larviposit on 24 June and the second generation developed in July to September. The alatiform of the second generation arrived at the final stadium in late September. Consequently, there were at least 4 generations within the galls. Alatae escaped from galls in early October. Correlation between gall and leaf growth indicated that fundatrix might act as a gall forming factor and 2nd-4th generations growing factor. A new species to Korean fauna, Nurudea shirai (Matsumura 1917) was found during this study.

  • PDF

Quantitative Determination of pH and Salt Effects on the Soil Sorption Equilibrium of Pentachlorophenol (PCP) (pH와 염이 Pentachlorophenol의 토양 수착평형에 미치는 영향의 정량적 결정)

  • 오정은;이동수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 1997
  • Laboratory experiments were conducted to study the effects of pH and salt level on the soil sorption equilibrium of pentachlorophenol (PCP) which is hydrophobic and ionogenic. Experimental results indicated that the sorption equilibrium constant (Kp) of PCP increased with decreasing pH. A quantitative sorption model involving linear isotherms was estabilished to predict the pH effect on the PCP sorption equilibrium over the pH range from 3 to 8. The model prediction was in good agreement with the experimental data. Also, the Kp increased with salt concentration over the entire pH range. At added salt levels less than 0.1M, increase in Kp was larger than when the added levels were higher than 0.1M. Salt might increase the PCP sorption by inducing 'salting out-effect' or by forming deprotonated PCP-cation ion pairs such as PCP$\^$-/K$\^$+/. Taking the pH range (5-8) and the salt content (up to 50 g/L) in the groundwater of Metropolitan landfill sites into consideration, the results indicated that the retardation factor of PCP in this area might range from 3 to 550 depending upon pH and salt content.

  • PDF

Characteristics and Genesis of Terrace Soils in Yeongnam Area -V : Soil Genesis and Classification (영남지역(嶺南地域)에 분포(分布)된 단구지토양(段丘地土壤)의 특성(特性)과 생성연구(生成硏究) -제(第)5보(報) : 토양생성(土壤生成)과 분류(分類))

  • Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.275-282
    • /
    • 1986
  • A series of studies on the properties of clayey terrace soils distributed at the inland (Yeongcheon) and coastal (Yeongjil) regions in Yeongnam district was carried out. On the base of the facts found and already reported about the macro morphological features as well as on pedological characters in micro scale, physicochemical properties, mineralogical characteristics etc., the present study dealt with soil genesis and tried to classify the soils for reasonable use and managements. 1. Although the both regions belonged to "Mesic" soil temperature regime and "red and yellow earths" areas of "Thornthwaite" pedo-climatic diagram, climatic indices as a soil forming factor indicate that the coastal Yeongil had milder than the inland Yeongcheon. 2. All the terrace soils had developed soil profiles with an "Argrllic B". Upyeong soils in Yeongil region had "Argillans" even in the "II B horizons" that possibly be "Paleo-argillic". 3. The bisequum profiles of Bancheon in Yeongcheon and Upyeong in Yeongil revealed that they were developed on Late Mesozoic shale and on semiconsolidated Tertiary deposits respectively, therefore the overlying clayey terrace deposits were assumed to be originated from the Early Quaternary deposits, Diluvium. 4. To supplement the Soil Taxonomy of USDA, the terrace soils with different degrees of gleyzation were classified as follows; Deogpyeong and Hwadong soils which have less than 50cm of paddified gley horizons (redness less than 0.5) in the upper part of the profiles by artificial surface irrigation, tentatively classified into "Anthrepiaquic Hapludalfs" and the Geugrag soils that have more than 50cm of paddified gley horizons within 1.2m of the profiles, into "Anthr-aquic Ochraqualfs" while the Upyeong soils that had greyish mottles in subsoils by natural ground water remain as an "Aquic Hapludalfs" the same as present. The Bancheon soils with free mottles are into "Typic Hapludalfs" as used at present.

  • PDF