• Title/Summary/Keyword: soil evolution

Search Result 167, Processing Time 0.021 seconds

Soil Carbon Dioxide Evolution in Three Deciduous Tree Plantations (3종류 활엽수 조림지 토양의 이산화탄소 발생)

  • Son, Yowhan;Lee, Goo;Hong, Ji-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.290-295
    • /
    • 1994
  • Soil $CO_2$ evolution was measured using the soda-lime method for 20-year-old L. tulipifera, P. albaglandulosa, and Q. rubra plantations planted on a similar soil type in the Kwangneung Experimental Forest during the growing season of 1994. Soil $CO_2$ evolution ranged from $0.21g/m^2/hr$ for Q. rubra to $0.33g/m^2/hr$ for L. tulipifera. and was significantly different among species. We found positive correlations between soil $CO_2$ evolution and air(p<0.001, r=0.39) and soil temperatures(p<0.001, r=0.49). Peaks in seasonal soil $CO_2$ evolution occurred in July and August. Seasonal soil $CO_2$evolution did not necessarily follow changes in air and soil temperatures. This study implies that more work is needed to clarify the influence of other factors on soil $CO_2$evolution.

  • PDF

Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama

  • Rosas-Medina, Miguel;Macia-Vicente, Jose G.;Piepenbring, Meike
    • Mycobiology
    • /
    • v.48 no.1
    • /
    • pp.20-28
    • /
    • 2020
  • Soil degradation can have an impact on the soil microbiota, but its specific effects on soil fungal communities are poorly understood. In this work, we studied the impact of soil degradation on the richness and diversity of communities of soil fungi, including three different degrees of degradation in Germany and Panama. Soil fungi were isolated monthly using the soil-sprinkling method for 8 months in Germany and 3 months in Panama, and characterized by morphological and molecular data. Soil physico-chemical properties were measured and correlated with the observed values of fungal diversity. We isolated a total of 71 fungal species, 47 from Germany, and 32 from Panama. Soil properties were not associated with fungal richness, diversity, or composition in soils, with the exception of soil compaction in Germany. The geographic location was a strong determinant of the soil fungal species composition although in both countries there was dominance by members of the orders Eurotiales and Hypocreales. In conclusion, the results of this work do not show any evident influence of soil degradation on communities of soil fungi in Germany or Panama.

Soil CO2 Evolution and Nitrogen Availability on Abandoned Agricultural Fields at Mt. Kumdan (검단산 한계농지에서의 토양발생 CO2 및 질소 유효도)

  • Son, Yo-whan;Ban, Ji-yeon;Kim, Rae-Hyun;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 2003
  • The iufluence of abandonment of agricultural fields on soil carbon and nitrogen dynamics is rarely addressed due to lack of appropriately paired sites. In this study, we identified three sites that have native forest and abandoned rice and crop fields at Mt. Kumdan near Seoul. Currently the vegetation of indigenous forest and the abandoned rice field is deciduous hardwood forest, while that of the abandoned crop field is deciduous shrub. We measured soil $CO_2$ evolution and inorganic N availability for the three sites from 25 July 2002 through 24 January 2003. Soil $CO_2$ evolution tracked seasonal soil temperature. Mean soil $CO_2$ evolution (g $CO_2$/$m^2$/hr) for the study period was 0.42 for the rice field to forest, 0.50 for the crop field to shrub, and 0.41 for the indigenous forest, respectively. Soil $CO_2$ evolution and soil temperature were not different among the sites; however, soil water content was significantly different. Soil water content had a very weak influence on soil $CO_2$ evolution. Inorganic resin N availability differed among the three sites and seemed to be related to soil moisture.

Evolution of pullout behavior of geocell embedded in sandy soil

  • Yang Zhao;Zheng Lu;Jie Liu;Jingbo Zhang;Chuxuan Tang;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • This paper aims to explore the evolution of the pullout behavior of geocell reinforcement insights from three-dimensional numerical studies. Initially, a developed model was validated with the model test results. The horizontal displacement of geocells and infill sand and the passive resistance transmission in the geocell layer were analyzed deeply to explore the evolution of geocell pullout behavior. The results reveal that the pullout behavior of geocell reinforcement is the pattern of progressive deformation. The geocell pockets are gradually mobilized to resist the pullout force. The vertical walls provide passive pressure, which is the main contributor to the pullout force. Hence, even if the frontal displacement (FD) is up to 90m mm, only half of the pockets are mobilized. Furthermore, the parametric studies, orthogonal analysis, and the building of the predicted model were also carried out to quantitative the geocell pullout behavior. The weights of influencing factors were ranked. Ones can calculate the pullout force accurately by inputting the aspect ratio, geocell modulus, embedded length, frontal displacement, and normal stress.

Ecological Evolution of the Spiders (거미류의 생태적 진화에 관한 연구)

  • Kim, Joo-Pil
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.61-68
    • /
    • 1999
  • This study reports evolution of spiders which were introduced 400 million years ago in ecological and evolutional aspects. First ecological aspects: underwater life, life of fallen leaves, the crevice of soil, underground life, life in cavern, wandering life in the surface of the earth and threading life in the air. Second evolutional aspects : a kind of the arachnids and morphological change.

  • PDF

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

토착 미생물의 활성에 의한 유류오염 토양 정화 실험

  • 이지훈;이종규;최상진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.199-202
    • /
    • 2002
  • Many methods have been developed for the remediation of contaminated soil and groundwater. Among those technologies, in-situ bioremediation is most likely to be cost-effective method for petroleum hydrocarbon contamination. But the in-situ bioremediation can require more time to remediate hydrocarbon-contaminated soil and groundwater than other methods. Therefore we intended to save time of in-situ bioremediation using a biological additive to activate indigenous microbes in soil. The additive, 'Inipol EAP 22' stimulates the growth of specific flora, significantly accelerating the speed at which hydrocarbons are biodegraded. And it hans been tested in accordance with protocol approved by the USEPA and is registered on the National Contingency Plan Product Schedule List. In the experiment, three soil samples contaminated with fuel oil were prepared in the same concentration. Inipol EAP 22 was not added to one sample and was added to the other two samples with 5% and 10% of hydrocarbon by weight respectively. And $CO_2$gas derived from bacterial respiration was analyzed in each samples for 15 days. As a result, 145% and 153% of $CO_2$ evolution (microbial respiration) against the sample without 'Inipol EAP 22' occurred in samples with 'Inipol EAP 22' addition of 5% and 10%, respectively

  • PDF

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun;Shin, Ho-Sung;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.