DOI QR코드

DOI QR Code

Evolution of pullout behavior of geocell embedded in sandy soil

  • Yang Zhao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Zheng Lu (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Jie Liu (Xinjiang Transportation Planning Survey and Design Institute Co., Ltd.) ;
  • Jingbo Zhang (CCCC Second Highway Consultants Co., Ltd.) ;
  • Chuxuan Tang (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Hailin Yao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • Received : 2023.04.17
  • Accepted : 2024.07.18
  • Published : 2024.08.10

Abstract

This paper aims to explore the evolution of the pullout behavior of geocell reinforcement insights from three-dimensional numerical studies. Initially, a developed model was validated with the model test results. The horizontal displacement of geocells and infill sand and the passive resistance transmission in the geocell layer were analyzed deeply to explore the evolution of geocell pullout behavior. The results reveal that the pullout behavior of geocell reinforcement is the pattern of progressive deformation. The geocell pockets are gradually mobilized to resist the pullout force. The vertical walls provide passive pressure, which is the main contributor to the pullout force. Hence, even if the frontal displacement (FD) is up to 90m mm, only half of the pockets are mobilized. Furthermore, the parametric studies, orthogonal analysis, and the building of the predicted model were also carried out to quantitative the geocell pullout behavior. The weights of influencing factors were ranked. Ones can calculate the pullout force accurately by inputting the aspect ratio, geocell modulus, embedded length, frontal displacement, and normal stress.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 420772622, 42077261, and 41972294). In addition, Yang Zhao wants to thank Juan Li and Guan-lin Zhao for their encouragement and support over the past few years.

References

  1. Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419.
  2. Ardakani, A. and Namaei, A. (2021), "Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect", Geomech. Eng., 24(6), 589-597. https://doi.org/10.12989/gae.2021.24.6.589.
  3. Bathurst, R.J. and Karpurapu, R. (1993), "Large-scale triaxial compression testing of geocell-reinforced granular soils", Geotech. Test. J., 16(3), 296-303. https://doi.org/10.1520/GTJ10050J.
  4. Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. https://doi.org/10.12989/gae.2017.13.4.641.
  5. Derksen, J., Ziegler, M. and Fuentes, R. (2021), "Geogrid-soil interaction: A new conceptual model and testing apparatus", Geotext. Geomembranes, 49(5), 1393-1406. https://doi.org/10.1016/j.geotexmem.2021.05.011.
  6. Fakharian, K. and Pilban, A. (2021), "Pullout tests on diagonally enhanced geocells embedded in sand to improve load-deformation response subjected to significant planar tensile loads", Geotext. Geomembranes, 49(5), 1229-1244. https://doi.org/10.1016/j.geotexmem.2021.04.002.
  7. Gedela, R. and Karpurapu, R. (2021), "Influence of pocket shape on numerical response of geocell reinforced foundation systems", Geosynth. Int., 28(3), 327-337. https://doi.org/10.1680/jgein.20.00042.
  8. Girout, R., Blanc, M., Thorel, L. and Dias, D. (2018), "Geosynthetic reinforcement of pile-supported embankments", Geosynth. Int., 25(1), 37-49. https://doi.org/10.1680/jgein.17.00032.
  9. Halder, K. and Chakraborty, D. (2020), "Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope", Comput. Geotech., 122, 103533. (https://doi.org/10.1016/j.compgeo.2020.103533.
  10. Han, X.Y., Kiyota, T. and Tatsuoka, F. (2013), "Interaction mechanism between geocell reinforcement and gravelly soil by pullout tests", Bull. Earth Resistance Struct., 46, 53-62.
  11. Isik, A., Anil, O. and Gurbuz, A. (2022), "Proposed novel bond-slip model for geocell reinforcement under pull-out loading condition", Geotechnique, 73(11), 1-44. https://doi.org/10.1680/jgeot.21.00120.
  12. Isik, A. and Gurbuz, A. (2020), "Pullout behavior of geocell reinforcement in cohesionless soils", Geotext. Geomembranes, 48(1), 71-81. https://doi.org/10.1016/j.geotexmem.2019.103506.
  13. Karnamprabhakara, B.K. and Balunaini, U. (2021), "Modified axial pullout resistance factors of geogrids embedded in pond ash", Geotext. Geomembranes, 49(5), 1245-1255. https://doi.org/10.1016/j.geotexmem.2021.04.003.
  14. Khalaj, O., Tafreshi, S.N.M., Mask, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. https://doi.org/10.12989/gae.2015.9.3.373.
  15. Khedkar, M.S. and Mandal, J.N. (2009), "Pullout behaviour of cellular reinforcements", Geotext. Geomembranes, 27(4), 262-271. https://doi.org/10.1016/j.geotexmem.2008.12.003.
  16. Khorsandiardebili, N. and Ghazavi, M. (2021), "Static stability analysis of geocell-reinforced slopes", Geotext. Geomembranes, 49(3), 852-863. https://doi.org/10.1016/j.geotexmem.2020.12.012.
  17. Kumar, A., Singh, A.P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance trafficability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
  18. Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-130. https://doi.org/10.12989/gae.2011.3.2.117.
  19. Lu, W., Miao, L., Wang, E., Zhang, J., Zhang, Y. and Wang, H. (2020), "A case study on geogrid-reinforced and pile-supported widened highway embankment", Geosynth. Int., 27(3), 261-274. https://doi.org/10.1680/jgein.19.00024.
  20. Luo, X.W., Lu, Z., Yao, H.L., Zhang, J.B. and Song, W. (2021), "Experimental study on soft rock subgrade reinforced with geocell", Road Mater. Pavement Des., 23(9), 1-15. https://doi.org/10.1080/14680629.2021.1948907.
  21. Luo, X.W., Lu, Z., Zhang, J.B. and Yao, H.L. (2023), "Study on performance of geocell-reinforced red clay subgrade", Geosynth. Int., 1-41. https://doi.org/10.1680/jgein.23.00068.
  22. Mirzaeifar, H., Hatami, K. and Abdi, M.R. (2022), "Pullout testing and Particle Image Velocimetry (PIV) analysis of geogrid reinforcement embedded in granular drainage layers", Geotext. Geomembranes, 50(6), 1083-1109. https://doi.org/10.1016/j.geotexmem.2022.06.008.
  23. Moraci, N. and Recalcati, P. (2006), "Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil", Geotext. Geomembranes, 24(4), 220-242. https://doi.org/10.1016/j.geotexmem.2006.03.001.
  24. Mosallanezhad, M., Taghavi, S.H.S., Hataf, N. and Alfaro, M.C. (2016), "Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions", Geotext. Geomembranes, 44(1), 70-80. https://doi.org/10.1016/j.geotexmem.2015.07.006.
  25. Mukherjee, S., Kumar, L., Choudhary, A.K. and Babu, G.L.S. (2021), "Pullout resistance of inclined anchors embedded in geogrid reinforced sand", Geotext. Geomembranes, 49(5), 1368-1379. https://doi.org/10.1016/j.geotexmem.2021.05.009.
  26. Namaei-kohal, A., Ardakani, A. and Hassanlourad, M. (2022), "Hypoplastic soil model parameters calibration for Tehran silica sand and verification with a monotonic geocell pullout test", Arabian J. Geosci., 15(9), 824. https://doi.org/10.1007/s12517-022-10110-9.
  27. Pant, A. and Ramana, G.V. (2022), "Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model", Geotext. Geomembranes, 50(6), 1188-1198. https://doi.org/10.1016/j.geotexmem.2022.08.003.
  28. Ren, F., Huang, Q., Liu, Q. and Wang, G. (2022), "Numerical study on the pull-out behaviour of planar reinforcements with consideration of residual interfacial shear strength", Transp. Geotech., 35, 100766. https://doi.org/10.1016/j.trgeo.2022.100766.
  29. Saikia, R. and Dash, S.K. (2024), "Load carrying mechanism of geocell reinforced embankment on soft soil", Transp. Res. Rec., 03611981241230317. https://doi.org/10.1177/03611981241230317.
  30. Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. https://doi.org/10.12989/gae.2013.5.3.263.
  31. Tafreshi, S.N.M., Darabi, N.J. and Dawson, A.R. (2018), "Cyclic loading response of footing on multilayered rubber-soil mixtures", Geomech. Eng., 14(2), 115-129. https://doi.org/10.12989/gae.2018.14.2.115.
  32. Wang, Z., Jacobs, F. and Ziegler, M. (2016), "Experimental and DEM investigation of geogrid-soil interaction under pullout loads", Geotext. Geomembranes, 44(3), 230-246. https://doi.org/10.1016/j.geotexmem.2015.11.001.
  33. Wijerathna, M. and Liyanapathirana, D.S. (2020), "Load transfer mechanism in geosynthetic reinforced column-supported embankments", Geosynth. Int., 27(3), 236-248. https://doi.org/10.1680/jgein.19.00022.
  34. Yang, X.M., Han, J., Leshchinsky, D. and Parsons, R.L. (2013), "A three-dimensional mechanistic-empirical model for geocell-reinforced unpaved roads", Acta Geotech., 8(2), 201-213. https://doi.org/10.1007/s11440-012-0183-6.
  35. Yang, X.M., Han, J., Pokharel, S.K., Manandhar, C., Parsons, R.L., Leshchinsky, D. and Halahmi, L. (2012), "Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases", Geotext. Geomembranes, 32(95-103. https://doi.org/10.1016/j.geotexmem.2011.10.004.
  36. Zhao, Y., Lu, Z., Liu, J., Ye, L., Xu, W.Z. and Yao, H.L. (2023), "Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade", Geomech. Eng., 33(3), 301-315. https://doi.org/10.12989/gae.2023.33.3.301.
  37. Zhao, Y., Lu, Z., Liu, J. and Yao, H.L. (2024a), "Numerical study on shear behavior of geocell-reinforced layer based on large-scale direct shear tests", KSCE J. Civ. Eng., 28(7), 2613-2624. https://doi.org/10.1007/s12205-024-2458-5.
  38. Zhao, Y., Lu, Z., Yao, H.L., Ye, L., Cheng, M., Tang, C.X., Qiu, Y. and Yuan, X.Z. (2024b), "A regression model for predicting the subgrade modulus of geocell-reinforced sand beds", Int. J. Geomech., 24(1), 06023022. https://doi.org/doi:10.1061/IJGNAI.GMENG-7378.