Browse > Article
http://dx.doi.org/10.12989/gae.2019.19.1.079

Numerical analysis of offshore monopile during repetitive lateral loading  

Chong, Song-Hun (Department of Civil Engineering, Sunchon National University)
Shin, Ho-Sung (Department of Civil and Environmental Engineering, University of Ulsan)
Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology)
Publication Information
Geomechanics and Engineering / v.19, no.1, 2019 , pp. 79-91 More about this Journal
Abstract
Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.
Keywords
long-term monopile foundation; semi-empirical numerical scheme; terminal void ratio; shakedown; displacement evolution; soil densification;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 API (2000), "Recommended practice for planning, designing and constructing fixed offshore platforms: Working stress design", American Petroleum Institute.
2 Arshad, M. and O'Kelly, B.C. (2016), "Model studies on monopile behavior under long-term repeated lateral loading", Int. J. Geomech., 17(1), 04016040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000679.   DOI
3 Barksdale, R.D. (1972), "Laboratory evaluation of rutting in basecourse materials", Proceedings of the 3rd International Conference on Structural Design of Asphalt Pavements, London, U.K., September.
4 Bienen, B., Duhrkop, J., Grabe, J., Randolph, M. and White, D. (2012), "Response of piles with wings to monotonic and cyclic lateral loading in sand", J. Geotech. Geoenviron. Eng., 138(3), 364-375. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000592.   DOI
5 Bouckovalas, G., Whitman, R. and Marr, W. (1984), "Permanent displacement of sand with cyclic loading", J. Geotech. Eng., 110(11), 1606-1623. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1606).   DOI
6 Briaud, J.L., Smith, T.O. and Meyer, B.J. (1984), "Using the pressuremeter curve to design laterally loaded piles", Proceeding of the 15th Annual Offshore Technology Conference, Houston, Texas, U.S.A., January.
7 Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(3), 123-158.   DOI
8 Chong, S.H. and Santamarina, J.C. (2016), "Sands subjected to repetitive vertical loading under zero lateral strain: Accumulation models, terminal densities, and settlement", Can. Geotech. J., 53(12), 2039-2046. https://doi.org/10.1139/cgj-2016-0032.   DOI
9 Brown, S.F. (1974), "Repeated load testing of a granular material", J. Geotech. Eng. Div., 100(7), 825-841.   DOI
10 Chang, C. and Whitman, R. (1988), "Drained permanent deformation of sand due to cyclic loading", J. Geotech. Eng., 114(10), 1164-1180. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1164).   DOI
11 Choo, Y.W. and Kim, D. (2016), "Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: Centrifuge tests", J. Geotech. Geoenviron. Eng., 142(1), 04015058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.   DOI
12 Finn, W.D.L. (1981), "Liquefaction potential: Developments since 1976", Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, U.S.A., April-May.
13 Cuellar, P., Baessler, M. and Rucker, W. (2009), "Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads", Granul. Matter, 11(6), 379-390. https://doi.org/10.1007/s10035-009-0153-3.   DOI
14 Diyaljee, V.A. and Raymond, G.P. (1982), "Repetitive load deformation of cohesionless soil", J. Geotech. Eng. Div., 108(10), 1215-1229.   DOI
15 Dyson, G.J. and Randolph, M.F. (2001), "Monotonic lateral loading of piles in calcareous sand", J. Geotech. Geoenviron. Eng., 127(4), 346-352. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346).   DOI
16 Kaggwa, W., Booker, J. and Carter, J. (1991), "Residual strains in calcareous sand due to irregular cyclic loading", J. Geotech. Eng., 117(2), 201-218. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(201).   DOI
17 Francois, S., Karg, C., Haegeman, W. and Degrande, G. (2010), "A numerical model for foundation settlements due to deformation accumulation in granular soils under repeated small amplitude dynamic loading", Int. J. Numer. Anal. Meth. Geomech., 34(3), 273-296. https://doi.org/10.1002/nag.807.   DOI
18 Garcia-Rojo, R. and Herrmann, H.J. (2005), "Shakedown of unbound granular material", Granul. Matter, 7(2-3), 109-118. https://doi.org/10.1007/s10035-004-0186-6.   DOI
19 Jeong, S., Park, J., Ko, J. and Kim, B. (2017), "Analysis of soil resistance on drilled shafts using proposed cyclic p-y curves in weathered soil", Geomech. Eng., 12(3), 505-522. https://doi.org/10.12989/gae.2017.12.3.505.   DOI
20 Karg, C., Francois, S., Haegeman, W. and Degrande, G. (2010), "Elasto-plastic long-term behavior of granular soils: Modelling and experimental validation", Soil Dyn. Earthq. Eng., 30(8), 635-646. https://doi.org/10.1016/j.soildyn.2010.02.006.   DOI
21 Leblanc, C., Houlsby, G.T. and Byrne, B.W. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.   DOI
22 Koiter, W.T. (1960), General Theorems for Elastic-Plastic Solids, Amsterdam, The Netherlands.
23 Kulhawy, F.H. (1991), Drilled Shaft Foundations, in Foundation Engineering Handbook, Springer, Boston, Massachusetts, U.S.A., 537-552.
24 Kuo, Y.S., Achmus, M. and Abdel-Rahman, K. (2012), "Minimum embedded length of cyclic horizontally loaded monopiles", J. Geotech. Geoenviron. Eng., 138(3), 357-363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602.   DOI
25 Meyerhof, G.G., Mathur, S.K. and Valsangkar, A.J. (1981), "Lateral resistance and deflection of rigid walls and piles in layered soils", Can. Geotech. J., 18(2), 159-170. https://doi.org/10.1139/t81-021.   DOI
26 Luong, M.P. (1980), "Stress-strain aspects of cohesionless soils under cyclic and transient loading", Proceeding of the International Symposium on Soils under cyclic and transient loading, Swansea, Wales, U.K., January.
27 Malhotra, S. (2010), "Design and construction considerations for offshore wind turbine foundations in North America", Proceedings of the GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, Florida, February.
28 Mayne, P.W. and Holtz, R.D. (1985), "Effect of principal stress rotation on clay strength", Proceeding of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, California, U.S.A., August.
29 Meyerhof, G.G., Sastry, V.V.R.N. and Yalcin, A.S. (1988), "Lateral resistance and deflection of flexible piles", Can. Geotech. J., 25(3), 511-522. https://doi.org/10.1139/t88-056.   DOI
30 Monismith, C.L.N.O. and Freeme, C.R. (1975), "Permenent deformation characteristics of subgrade soils due to repeated loading", Proceedings of the 54th Annual Meeting of the Transportation Research Board, Washington, U.S.A., January.
31 Narsilio, G.A. and Santamarina, J.C. (2008), "Terminal densities", Geotechnique, 58(8), 669-674. https://doi.org/10.1680/geot.2008.58.8.669.
32 Niemunis, A., Wichtmann, T. and Triantafyllidis, T. (2005), "A high-cycle accumulation model for sand", Comput. Geotech., 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.   DOI
33 Sharp, R. and Booker, J. (1984), "Shakedown of pavements under moving surface loads", J. Transport. Eng., 110(1), 1-14. https://doi.org/10.1061/(ASCE)0733-947X(1984)110:1(1).   DOI
34 Sawczuk, A. (1974), "Shakedown analysis of elastic-plastic structures", Nucl. Eng. Des., 28(1), 121-136. https://doi.org/10.1016/0029-5493(74)90091-0.   DOI
35 Sawicki, A. (1994), "Elasto-plastic interpretation of oedometric test", Arch. Hydro-Eng. Environ. Mech., 41(1-2), 111-131.
36 Sawicki, A. and Swidzinski, W. (1995), "Cyclic compaction of soils, grains and powders", Powder Technol., 85(2), 97-104. https://doi.org/10.1016/0032-5910(95)03013-Y.   DOI
37 Shi, J., Zhang, Y., Chen, L. and Fu, Z. (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.   DOI
38 Smith, T.D. (1987), "Pile horizontal soil modulus values", J. Geotech. Eng., 113(9), 1040-1044. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(1040).   DOI
39 Stewart, H.E. (1986), "Permanent strains from cyclic variableamplitude loadings", J. Geotech. Eng., 112(6), 646-660. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(646).   DOI
40 Suiker, A.S.J. and de Borst, R. (2003), "A numerical model for the cyclic deterioration of railway tracks", Int. J. Numer. Meth. Eng., 57(4), 441-470. https://doi.org/10.1002/nme.683.   DOI
41 Prasad, Y.V. and Chari, T. (1999), "Lateral capacity of model rigid piles in cohesionless soils", Soil Found., 39(2), 21-29. https://doi.org/10.3208/sandf.39.2_21.   DOI
42 Pasten, C., Shin, H. and Santamarina, J. (2014), "Long-term foundation response to repetitive loading, J. Geotech. Geoenviron. Eng., 140(4), 04013036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001052.   DOI
43 Peng, J., Clarke, B.G. and Rouainia, M. (2011), "Increasing the resistance of piles subject to cyclic lateral loading", J. Geotech. Geoenviron. Eng., 137(10), 977-982. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000504.   DOI
44 Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, New York, U.S.A.
45 Randolph, M.F. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31(2), 247-259. https://doi.org/10.1680/geot.1981.31.2.247.   DOI
46 Reese, L.C. and Cox, W.R. (1975), "Field testing and analysis of laterally loaded piles in stiff clay", Proceeding of the 7th Annual Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, U.S.A., May.
47 Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceeding of the 6th Annual Offshore Technology Conference, Houston, Texas, U.S.A., May.
48 Wichtmann, T. (2005), "Explicit accumulation model for noncohesive soils under cyclic loading", Ph.D. Dissertation, Ruhr-University Bochum, Bochun, Germany.
49 Tiwari, B. and Al-Adhadh, A.R. (2014), "Influence of relative density on static soil-structure frictional resistance of dry and saturated sand", Geotech. Geol. Eng., 32(2), 411-427. https://doi.org/10.1007/s10706-013-9723-6.   DOI
50 Tuladhar, R., Maki, T. and Mutsuyoshi, H. (2008), "Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil", Earthq. Eng. Struct. Dyn., 37(1), 43-59. https://doi.org/10.1002/eqe.744.   DOI
51 Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2005), "Strain accumulation in sand due to cyclic loading: Drained triaxial tests", Soil Dyn. Earthq. Eng., 25(12), 967-979. https://doi.org/10.1016/j.soildyn.2005.02.022.   DOI
52 Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2007), "Strain accumulation in sand due to cyclic loading: Drained cyclic tests with triaxial extension", Soil Dyn. Earthq. Eng., 27(1), 42-48. https://doi.org/10.1016/j.soildyn.2006.04.001.   DOI
53 Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2010a), "Strain accumulation in sand due to drained cyclic loading: On the effect of monotonic and cyclic preloading (Miner's rule)", Soil Dyn. Earthq. Eng., 30(8), 736-745. https://doi.org/10.1016/j.soildyn.2010.03.004.   DOI
54 Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2010b), "On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils", Int. J. Numer. Anal. Meth. Geomech., 34(4), 409-440. https://doi.org/10.1002/nag.821.   DOI
55 Ahmed, S.S. and Hawlader, B. (2016), "Numerical analysis of large-diameter monopiles in dense sand supporting offshore wind turbine", Int. J. Geomech., 16(5), 04016018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000633.   DOI
56 Zhang, L., Silva, F. and Grismala, R. (2005), "Ultimate lateral resistance to piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 131(1), 78-83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78).   DOI
57 ABAQUS 6.14 [Computer software], Dassault Systemes, Providence, Rhode Island, U.S.A.
58 Achmus, M., Kuo, Y.S. and Abdel-Rahman, K. (2009), "Behavior of monopile foundations under cyclic lateral load", Comput. Geotech., 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003.   DOI