• Title/Summary/Keyword: soil cutting

Search Result 343, Processing Time 0.038 seconds

A Study on Soil Environment in Highway Cutting Slope and Adjacent Natural Vegetation Area (고속도로 절토 비탈면과 인접 자연식생지의 토양 환경 비교 분석)

  • Park, Gwan-Soo;Jeon, Gi-Seong;Song, Ho-Kyung;Kim, Nam-Choon;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • This study was carried out to estimate the physical and chemical soil characteristics in highway cutting slope areas. The soil was sampled in cutting area and natural vegetation area that was located in the upper areas of the highway cutting slope. The average total soil depth, bulk density, and soil hardness were bad in the highway cutting slope sites. The sandy loam was the most soil texture in the study area. The concentration of soil organic matter and nitrogen were very low in all highway cutting areas. The concentration of exchangeable cations was similar between the highway cutting slope and the natural vegetation sites in each highway. The soil pH was higher in highway cutting slope areas than in natural vegetation sites. In conclusion, chemical and physical properties of soil were bad in the cutting slope than in the natural vegetation area because of the loss of soil by cutting of slope area and less organic matter input by less vegetation in the highway cutting slope area. We should employ possible method to reduce the loss of soil, and compost and fertilization treatment could help to increase soil nutrient content in the cutting slope area.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Soil Cutting of Two-Sided Wedge In High Speed Curve Movement

  • Sang, Zhenghong;Mao, Hanping;Chen, Cuiying
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1095-1101
    • /
    • 1993
  • This paper discussed the action on soil of two-sided wedge in high speed curve movement, with the emphasis on the deformation of soil and its cutting resistance.

  • PDF

Effects of Soil Water Potential of Cutting Bed and Relative Humidity on the Rooting of Stem Cutting (삽목발근촉진(揷木發根促進)을 위한 토양(土壤) 및 대기수분관리(大氣水分管理))

  • Hong, Seong Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.59-66
    • /
    • 1979
  • This experiment was carried out to know the effects of soil water potential of cutting bed and relative humidity on the rooting of stem cutting in the field plots. The results obtained were as follows; 1. The most number of the rooted cutting was found from 70 to 80% of relative humidity in Spring and from 90 to 100% in Summer respectively. 2. It was found that the number of rooted cutting was the least in the range of 0 to-0.006 bar of soil water potential of cutting bed in the case of Spring cutting, whereas in Summer the number of the rooted cutting was the most one in the range of -0.049 to -0.124 bar of soil water potential of cutting bed. 3. High signification was recognized between the relative humidity and the number of the rooted cutting only in the Spring cutting, but that of soil water potential and the number of the rooted cutting was found to be significant in every season.

  • PDF

Trials of the Utilization Method in Mixtures Swards II. Effects of grasing and cutting management on foragequality and soil hardness (혼파초지의 이용방법 비교시험 II. 방목 및 예취이용이 목초의 품질과 토양경도에 미치는 영향)

  • 신재순;이필상;박근제;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.96-101
    • /
    • 1990
  • This field experiment was undertaken to find out the effect of grazing and cutting management on the forage quality and soil hardness at different legumes sown swards of the experimental field of Livestock Experiment Station in Suweon, from August 1985 to October 1988. The results obtained are as follows: 1. Crude protein, crude fat and ash contents under grazing were higher than these under cutting, but showed the reverse results in crude fiber and nitrogen free extracts contents. Average in vitro dry matter digestibility (IVDMD) under grazing (72 %) was a little higher than that under cutting (71 %). On the other hand, there was little difference among the mixtures swards in mineral contents and IVDMD. 2. The contents of Ca, P and Mg were a little high in the cutting, but K and Na contents were in gazing. Ca: P ratio in grazing (2.97) was slightly higher than that of cutting (2.94). 3. Production of energies(TDN, StE and NEL) with cutting were appeard to increase by 19.4 %, 13.5 %and 19.0 % than those of grazing, respectively. Mixtures swards including alfalfa showed more production both grazing and cutting. 4. Soil hardness in the top lOcm of soil by cattle grazing was changed from 15.5mm at startihg year to 22.6 mm after 3 years, but in cutting slightly increase from 15.5mm to 16.2mm. Generally it was low in early spring and high in autumn.

  • PDF

Effects of Various Growing Conditions of the Mat-type Seedlings on the Cutting forces for ower Rice Transplanter. (Mat묘의 육모조건이 이앙기의 소요전단력에 미치는 영향)

  • 허민근;김성래
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-57
    • /
    • 1979
  • In order to obtain a standard reference for designing an adequate power rice transplanter, the cutting forces depending upon variety of seedling, sowing density, seedling age and soil moisture content of mat-type seedling were measured by the rice transplanter installed with force measuring device of dynamic strain gage system in the laboratory. The result of this study are summarized as follows : 1. Cutting velocity and acceleration transplanting hoe obtained from jinematic analysis of planting mechanism was 1.32m/sec and 81.5m/$sec^2$ when planting crank-shaft rpm was 160. 2. Little difference between cutting forces on 30-days old seelings of japonica and Indica type was observed, as the cutting forces determined were 2.0kg per hill for Japonica type and 2.1kg per hill for Indica type. 3. Cutting forces determined on 40-days old seedlings were 2.5kg, 2.3kg, 3.1kg and 2.9kg per hill for Milyang No.15, Tongil, Akibare and Milyang No.23 compared to the other varieties. 4. The cutting force was not greatly affected by the sowing densities , only five percent of differences were observed epending upon the sowing densities. 5. Cutting forces were 2.7kg and 2.0kg per hill on 40-days old seedlings and 30-days old seedlings respectively. About 38 percent of more forces was required in cutting 40-days old seedling than in cutting 30-days old seedlings. 6. More cutting forces were required as soil moisture content of mat-type seedling was decreased. 7. Root length after cutting by the planting hoe and their relationships with soil moisture content on 30-days old seedlings, are as follows ; $y=4.147-11.384x+ 28.854x^2$ where , $y$=root length after cutting. (cm) , $x$=soil ture content of mat type seedlings.(%, d.b.) 8. Cutting forces were varied with the width of cuttings ; those on 40-days old mat type seedlings were 2.7kg and 2.2kg per hill when cutting with 14 mm and 10mm of width respectively, about 32 percent of more forces was required when cuting with 14mm of width compared to 10mm of width.

  • PDF

Some Observations on SOIL SOIL-Failure By Linear Blade Using " Stilt" System

  • Mandang, Tinke;Nishimura, Isao
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1073-1087
    • /
    • 1993
  • Many investigations have been carried out concerning tillage tool performance, including energy requirement . Since the performance of tillage could also be evaluated through the change of soil , then it is necessary to investigate the soil cutting process and the pattern of soil failure. This study was conducted using indoor soil bin, STILT (Soil Tillage Tool Interaction) system. The result shows that the soil bin experiments could provide the clear understandings about phenomena of soil failure. The movement of sil , the successive failures was clearly visualized. The relations between the horizontal and vertical forces to the linear motion blade, the shear force on the shear plane which devides soil layer into several segments were indicated by the fluctuation/vibration of the recorded resistance and forces. The results show that the horizontal force(Fx) and vertical force (Fz) develope their frequencies as the change of velocity of blade (10, 20, 40 mm/sec) for each cutting angle (35, 45, 60 degrees). Resultant force of Fx and Fz are much influenced by the cutting angle.

  • PDF

A Study on the Cutting of Eucommia ulmoides $O_{LIV.}$ (I) -Effects of the Bed Soil on Rooting- (두중(杜仲) 삽목(揷木)에 관한 연구(硏究)(I) -삽토(揷土)종류가 발근(發根)에 미치는 영향(影響)-)

  • Ko, Young-Ok;Sung, Hwan-Gil
    • Korean Journal of Pharmacognosy
    • /
    • v.7 no.1
    • /
    • pp.59-61
    • /
    • 1976
  • The purpose of the study is to investigate the possibility of cutting of Eucommia ulmoides $O_{LIV}.$ (Eucomiaceae) by using various soils in Korea. Four different kinds of soil, such as sand, red cray, red cray plus sand and Masa soil, were used in the investigation. It was found that total length, number and rate of rooting were most prominent in the cutting cultivated in Masa soil.

  • PDF

The Evaluation of Failure Factors on Cutting Slopes of Forest Road by Quantification Theory(II) (수량화 II 류에 의한 임도절토사면의 붕괴요인 평가)

  • Cha, Du-Song;Ji, Byoung-Yun
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • On the basis of data obtained from forest road collapsed due to a heavy rainfall, this study carried out to evaluate the cutting slope failure factors of forest road by using Quantification theory(II). The results were summarized as follows. The factors on cutting slope failure was ranked in the order of cutting slope length, soil type, aspect, cutting slope gradients and slope gradients. And the slope failure was mainly occurred under such conditions as cutting slope length longer than 8m, soil type with soil, aspect of N, cutting slope gradients steeper than 600 and slope gradients greater than $35{\sim}40^{\circ}$.

  • PDF

Effects of Rice Straw Incorporation by Cutting Methods on Soil Properties and Rice Yield in a Paddy Field (볏짚 혼입이 논 토양개선 및 쌀수량에 미치는 영향)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Lee, Sang-Bog;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Chung, Doug-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1047-1050
    • /
    • 2010
  • This study was to investigate the effects of rice straw incorporation by cutting height on paddy soil fertility. The average residual amount of rice straw by cutting height were showed 1,420 kg $ha^{-1}$, 1,850 kg $ha^{-1}$, and 2,400 kg $ha^{-1}$ for depths of 10 cm, 15 cm, and 20 cm, respectively. For soil physical properties, soil hardness and bulk density were decreased while porosity was increased by rice straw incorporation. But soil organic matter (SOM), available silicate content, and cation exchange capacity (CEC) were significantly decreased when rice straw was removed from the field. These results indicated that the SOM as residual amount of rice straw was influenced by level of cutting height. Milled rice yield was increased by 28% and 32% for cutting heights of 15 cm and 20 cm, compared with that of control, respectively. The number of spikelets per square meter and the percentage of ripeness were increased with increasing incorporation by lower level of cutting height of rice straw. Therefore, incorporation of rice straw practices under cutting method influenced soil improvement and rice yield in paddy field.