• Title/Summary/Keyword: soil anisotropy

Search Result 61, Processing Time 0.024 seconds

Stiffness Degradation during Deep Excavation in Urban Area (도심지 깊은 굴착에 따른 지반 강성의 변화)

  • Choi, Jongho;Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2015
  • In urban area, many design projects related to geotechnical projects are controlled by serviceability rather than stability requirements. Accordingly, control of ground deformation has become more crucial and many researchers have studied soil stiffness. Recent experimental studies on the stress-strain response of Chicago glacial clays showed that the nonlinearity and anisotropy are the two key factors in evaluating the soil stiffness. In this study, experimental results are applied to analyze the deep excavation site locating in downtown Chicago. The stress paths observed from the observation points located behind and front of the supporting wall yield typical stress paths. Changes in soil stiffness nonlinearity and anisotropy were discussed by comparing experimental and computed stress paths. The stiffness anisotropy were significant even at the first few excavations. The stiffness degradation characteristics are significantly different according to relative location to the support wall even at the same elevation.

Study on Anisotropy of Normally Consolidated Clay Soils (정규압밀점성토의 이방성에 관한 연구)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 1995
  • In situ clay soils with Ko condition have anisotropic characteristics, varying the response according to the principal stress direction upon loading. But because of their practicality and simplicity, consolidated isotropic undrained compression tests are commonly used in practice to determine the behavior of cohesive soils. In this study to investigate the anisotropic characteristics and the effects of consolidation stress states on the response of normally consolidated clay soils during shearing, triaxial compression and extension tests after consolidating the undisturbed clay soil samples, which are obtained as a block sample to normalized consolidation states under isotropic or Ko state, were carried out. As a result of tests, the anisotropy of the undrained strength was confirmed. Comparing the soil responses between isotropic and Ko consolidation, the undrained strength by isotropic consolidation is overestimated because of its higher mean consolidation pressure. And isotropic consolidation reduces the anisotropy of soil response and influences on the stress-strain behavior and pore pressure response because the animotropic soil structure is partially collapsed during isotropic consolidation process. Also, OCR in overconsolidated soils is decreased by isotropic consolidatiorL Friction angle in eztension is higher than that in compression, but regression analysis shows that friction angle with cohesion in extension is almost the same as that without cohesion in compresslon.

  • PDF

Study on Cone Penetration Rate and Anisotropy in Cohesive Soils (점성토에 있어서 지반의 비등방성을 고려한 콘 관입속도에 관한 연구)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.559-566
    • /
    • 2000
  • 본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.

  • PDF

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

Some Influences of Anisotropy in Clay Soil and Rocks

  • R.H.G.Parry
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.06c
    • /
    • pp.1.2-22
    • /
    • 1997
  • Anisotropic behaviour in soils and soft rocks may be either fabric of stress related ultra in practice is invariably a combination of both. Theoretical studies in the paper include tile iMluence oil untrained strength of assuming both the critical state and Mo21r-Coulomb concepts to hold, and the influence of elastic anisotropy oil predicted undrained effective stress paths. The predictions stemming from these theoretical concepts are examined in the light of evidence from triaxial compression and extension tests oil laboratory prepared, compacted and natural clays and from triaxial compression tests on clay shales. The experimental studies also show the Buence of sample orientation on untrained snear strength, as wen as the iIBluence of anisotropy old the effective stress angle cishearing resistance and of stress patn on measured stiffness.

  • PDF

Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope

  • Xu, Jingshu;Li, Yongxin;Yang, Xiaoli
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Soils are mostly nonhomogeneous and anisotropic in nature. In this study, nonhomogeneity and anisotropy of soil are taken into consideration by assuming that the cohesion increases with depth linearly and also varies with respect to direction at a particular point. A three-dimensional rotational failure mechanism is adopted, and then a three-dimensional stability analysis of slope is carried out with the failure surface in the shape of a curvilinear cone in virtue of the limit analysis method. A quasistatic approach is used to develop stability charts in nonhomogeneous and anisotropic soils. One can easily read the safety factors from the charts without the need for iterative procedures for safety factors calculation. The charts are of practical importance to prevent a plane failure in excavation slope whether it is physically constrained or not. Then the most suitable location of piles within the reinforced slope in nonhomogeneous and anisotropic soils is explored, as well as the interactions of nonhomogeneous and anisotropic coefficients on pile reinforcement effects. The results indicate that piles are more effective when they are located between the middle and the crest of the slope, and the nonhomogeneous coefficient as well as the anisotropic coefficient will not only influence the most suitable location for piles but also affect the calculated safety factor of existing reinforced slope. In addition, the two coefficients will interact with each other on the effect on slope reinforcement.

Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Lee, Jong-Sub;Cho, Tae-Hyeon;Lee, Jeong-Hark;Kim, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

창원지역 화강암의 수리분산 특성

  • 김무진;함세영;황한석;김문수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.187-190
    • /
    • 2001
  • This study is concerned with the hydrodispersive characteristics of granite in Changwon area. A single-well injection/recovery tracer test was conducted to determine longitudinal dispersivity of the granite, using sodium chloride tracer The dispersivity values obtained from the injection phase are 0.48 m (for between PW-1 and OW-3) and 0.72 m (for between PW-1 and OW-4). That obtained from the recovery phase is 0.68 m. The result of the tracer test indicates that the anisotropy and heterogeneity of the granite and the direction of flow.

  • PDF