DOI QR코드

DOI QR Code

Stiffness Degradation during Deep Excavation in Urban Area

도심지 깊은 굴착에 따른 지반 강성의 변화

  • Choi, Jongho (Department of Civil Engineering, Hongik University) ;
  • Koo, Bonwhee (Department of Civil Engineering, Hongik University) ;
  • Kim, Taesik (Department of Civil Engineering, Hongik University)
  • Received : 2014.10.23
  • Accepted : 2014.12.09
  • Published : 2015.02.01

Abstract

In urban area, many design projects related to geotechnical projects are controlled by serviceability rather than stability requirements. Accordingly, control of ground deformation has become more crucial and many researchers have studied soil stiffness. Recent experimental studies on the stress-strain response of Chicago glacial clays showed that the nonlinearity and anisotropy are the two key factors in evaluating the soil stiffness. In this study, experimental results are applied to analyze the deep excavation site locating in downtown Chicago. The stress paths observed from the observation points located behind and front of the supporting wall yield typical stress paths. Changes in soil stiffness nonlinearity and anisotropy were discussed by comparing experimental and computed stress paths. The stiffness anisotropy were significant even at the first few excavations. The stiffness degradation characteristics are significantly different according to relative location to the support wall even at the same elevation.

도심지 구간에 위치한 지반공학 관련 공사 현장에서는 충분한 안전율 확보와 더불어 사용성도 확보해야 한다. 이를 위해서는 공사 중 인접지반에 발생하는 변형을 제어해야 하므로 지반구조물과 관련된 기술 요구사항도 더욱 높아지고 있다. 사용성 확보를 위해서는 지반의 변형을 예측해야 하므로 지반의 강성을 분석해야 한다. 특히 강성의 비선형성과 이방성은 주요인자라 할 수 있다. 본 연구에서는 깊은 굴착 중 지반이 경험하는 응력경로에 따른 강성의 비선형성과 이방성에 대해 실내시험 결과와 전산 해석 결과를 비교하였다. 강성은 변형률이 작은 미소변형률 구간에서 비선형성이 두드러졌으며, 응력경로에도 큰 영향을 받는 것으로 나타났다. 실내시험 결과 압축은 작은 강성을 인장은 큰 강성을 나타내었으며, 깊은 굴착 시 지지벽체 뒤는 압축이 앞은 인장이 지배적인 응력경로를 나타내었다. 굴착 중 발생하는 지반의 변형을 정확히 예측하기 위해서는 지반이 경험하는 응력경로에 따라 변하는 강성의 변화 특성을 고려해야 한다.

Keywords

References

  1. Chan, C. K. (1981), An electropneumatic cyclic loading system, Geotechnical Testing Journal, Vol. 4, No. 4, pp. 183-187. https://doi.org/10.1520/GTJ10788J
  2. Chung, C. K. and Finno, R. J. (1992), Influence of depositional processes on the geotechnical parameters of Chicago glacial clays, Engineering Geology, Vol. 32, No. 4, pp. 225-242. https://doi.org/10.1016/0013-7952(92)90050-9
  3. Jung, Y. H. and Kim, T. (2014), Stiffness reduction in soft Chicago clay during deep urban excavations, Geotechnical Aspects of Underground Construction in Soft Ground, Korean Geotechnical Society, Seoul, Korea, pp. 287-291.
  4. Kim, T. (2011), Incrementally nonlinear responses of soft Chicago glacial clays, Ph.D. thesis, Northwestern Univ., Evanston, IL. pp. 58-84.
  5. Kim, T. and Finno, R. J. (2012), Anisotropy evolution and irrecoverable deformation in triaxial stress probes, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 2, pp. 155-165. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000575
  6. Kolymbas, D. (1991), An outline of hypoplasticity. Archive of Applied Mechanics, Vol. 61, pp. 143-151.
  7. Masin, D. (2005), A hypoplastic constitutive model for clays, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 29, No. 4, pp. 311-366. https://doi.org/10.1002/nag.416
  8. Sarabia, F. (2012), Interpretation of the performance of earth retention structures using multi-objective optimization tech-niques and a hypo-plastic constitutive law. Ph.D thesis, Northwestern University, U.S. pp. 112-185.