• Title/Summary/Keyword: soil amplification

Search Result 163, Processing Time 0.02 seconds

The Effect of the Shear Wave Velocity of a Seismic Control Point on Site Response Analysis (기반암 전단파속도의 부지응답특성 영향평가)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In order to evaluate the effect of shear wave velocity of a seismic control point on site response analysis, one-dimensional equivalent linear site response analysis were performed on the model soil profile based on the results of a detailed site investigation of sedimentary layers at Incheon and Busan. The results of the analysis show that an increase of shear wave velocity on the seismic control point (base rock) results in an increase of acceleration in the soil layers. This was mainly due to an unclear definition of the seismic control point. For this reason, the Korean Seismic Design Standard requires a specific definition of the seismic control point, including spatial conditions and soil properties, similar to the MCE (Maximum Considered Earthquake) in FEMA 369.

Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes (9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구)

  • Lee, Cheol-Ho;Kim, Sung-Yong;Park, Ji-Hun;Kim, Dong-Kwan;Kim, Tae-Jin;Park, Kyoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Development of Permanent Displacement Model for Seismic Mountain Slope (지진 시 산사면의 영구변위 추정식 개발)

  • Lee, Jong-Hoo;Park, Duhee;Ahn, Jae-Kwang;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • Empirical seismic displacement equations based on the Newmark sliding block method are widely used to develop seismic landslide hazard map. Most proposed equations have been developed for embankments and landfills, and do not consider the dynamic response of sliding block. Therefore, they cannot be applied to Korean mountain slopes composed of thin, uniform soil-layer underlain by an inclined bedrock parallel to the slope. In this paper, a series of two-dimensional dynamic nonlinear finite difference analyses were performed to estimate the permanent seismic slope displacement. The seismic displacement of mountain slopes was calculated using the Newmark method and the equivalent acceleration time history. The calculated seismic displacements of the mountain slopes were compared to a widely used empirical displacement model. We show that the displacement prediction is significantly enhanced if the slope is modeled as a flexible sliding mass and the amplification characteristics are accounted for. Regression equation, which uses PGA, PGV, Arias intensity of the ground motion and the fundamental period of soil layer, is shown to provide a reliable estimate of the sliding displacement. Furthermore, the empirical equation is shown to reliably predict the hazard category.

Seismic Zonation on Site Responses in Daejeon by Building Geotechnical Information System Based on Spatial GIS Framework (공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화)

  • Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.5-19
    • /
    • 2009
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which is strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area of Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area concerned, pre-existing geotechnical data collections were performed across the extended area including the study area and site visits were additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area concerned, seismic zoning map of the site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on this case study on seismic zonations in Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

Impact of Virus-resistant Trigonal Cactus Cultivation on Soil Microbial Community (바이러스저항성 삼각주 재배가 토양 미생물상에 미치는 영향)

  • Oh, Sung-Dug;Kim, Jong-Bum;Lee, Jung-Jin;Kim, Min-Kyeong;Ahn, Byung-Ohg;Sohn, Soo-In;Park, Jong-Sug;Ryu, Tae-Hun;Cho, Hyun-Suk;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • BACKGROUND: Genetically modified(GM) trigonal cactus(Hylocereus trigonus Saff.) contained a coat protein gene of cactus virus X (CVX), which conferred resistance to the virus, phosphinothricin acetyltransferase (bar) gene, which conferred herbicide resistance, and a cauliflower mosaic virus 35S promoter (CaMV 35S). This study was conducted to evaluate the possible impact of GM trigonal cactus cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM trigonal cactus cultivation soils. The total numbers of bacteria, and actinomycete in the rhizosphere soils cultivated GM and non-GM trigonal cactus were similar to each other, and there was no significant difference. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM trigonal cactus were Proteobacteria, Uncultured archaeon, and Uncultured bacterium. The denaturing gradient gel electrophoresis (DGGE) profiles show a similar patterns, significant difference was not observed in each other. DNA was isolated from soil cultivated GM and non-GM trigonal cactus, we analyzed the persistence of the inserted gene by PCR. Amplification of the inserted genes was not observed in the soil DNA, which was collected after harvest. CONCLUSION(S): This result suggests that the GM trigonal cactus cultivation does not change significantly the microbial community.

Analysis of Bacterial Community Structure in Gossi Cave by Denaturing Gradient Gel Electrophoresis (DGGE) (DGGE를 이용한 동굴 생태계 세균 군집 구조 분석)

  • 조홍범;정순오;최용근
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.213-219
    • /
    • 2004
  • The bacterial community of water stream, soil and guano in Gossi cave was examined by using PCR amplified the 16S rDNA-denaturing gradient gel electrophoyesis (DGGE). In this study, the genetic diversity and the similarity of bacterial community between open area and non - open area toy cave tour were investigated, and the seasonable variation pattern was compared each other. DGGE is attractive technique, as it sepayate same length dsDNA according to sequence variation typical 16S rDNA genes. The diversity and similarity of bacterial community in cave was analyzed by GC341f and PRUN518r primer sets foy amplification of V3 region of eubacteria 16S rDNA. The specific DGGE band profile of the cave water gives the possibility that the specific bacterial cell can be adapting to the specific cave environment and living in the cave. The DGGE band profiles of all samples with guano were compared and analyzed by image analyzer, in which mutual band profile was compared to be and the band intensity of guano was the highest. From these result, it is thought that the guano was main nutrient source and influenced on the community structure of the cave environment where is nutritionally limited. Pseudomonas sp. NZ060, Pseudomonas pseudoalcaligenes, uncultured Variovorax sp. and soli bacterium NS7 were identified to be on some sample from analysing DNA sequence of some DGGE band.

Analysis of a Microbial Community Denitrying Nitrate to Nitrogen Gas in a Nitrate-Contaminated Aquifer

  • Jin-Hun, Kim;Bong-Ho, Son;Su-Yeol, Gwon;Seong-Uk, Eo;Yeong, Kim
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.175-178
    • /
    • 2004
  • Little study has been published specifically addressing the dynamics of nitrate reducing bacteria (NBR) during the bioremediation of nitrate-contaminated aquifer. In our previous study we successfully quantified fumarate-enhanced microbial nitrate reduction rate in a nitrate-contaminated aquifer by using a series of single-well push-pull tests (PPTs). In this study we analyzed the suspended population during PPTs. To monitor changes in the microbial community, PCR amplification of 16S rDNA genes and denaturing gradient gel electrophoresis (DGGE) were used to study the dynamics of the bacterial community in detail. Before the stimulation of NBR, the dominant DGGE bands obtained by PCR were affiliated with V-Proteobacteria consisting of Acinetobacter spp. and Pseudomonas fluorescens. However, as NBR biostimulation proceeded, the dominant patterns of DGGE bands changed, and they were affiliated with Azoarcus denitrificans Td-3 and Flavobacterium xanthum. Azoarcus denitrificans Td-3 is known to completely reduce nitrate to nitrogen gas. The series of single-well push-pull tests in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ denitrification and provide important information about which microorganisms play a key role in bioremediation of a nitrate contaminated aquifer.

  • PDF

Sphingobacterium sp. SW-09 Effectively Degrades Phenanthrene, a Polycyclic Aromatic Hydrocarbon, in a Soil Microcosm (Sphingobacterium sp. SW-09에 의한 토양환경에서의 다환 방향족탄화수소인 페난스렌의 분해)

  • Son, Seung-Woo;Chang, Hey-Won;Kim, Sung-Kuk;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1511-1517
    • /
    • 2011
  • We isolated a potent phenanthrene-degrading bacterium from oil-contaminated soils of Suzhou, China, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) in a microcosm. Based on 16S rDNA sequencing, we identified this bacteria as Sphigobacterium sp. SW-09. By PCR amplification, we also identified catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation. Staphylococcus sp. KW-07, which has been identified in our previous study, showed potential for use in bioremediation of oil-contaminated soils. In this experiment, we compared the rate of phenanthrene-degradation between Staphylococcus sp. KW-07 and Sphingobacterium sp. SW-09 in a microcosm condition. Newly isolated Sphingobacterium sp. SW-09 showed a higher phenanthrene-degradation rate than that of Staphylococcus sp. KW-07 in soil microcosms. Together, our results suggest that the Sphingobacterim sp. SW-09 strain isolated from the Suzhou area may also be useful in bioremediation of PAH-contaminated soils.

Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake - (비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 -)

  • Liu, Qihang;Lee, Jin-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.45-58
    • /
    • 2017
  • As many seismic codes for various facilities are changed into a performance based design code, demand for a reliable nonlinear response-history analysis (RHA) arises. However, the equivalent linear analysis has been used as a standard approach since 1970 in the field of site response analysis. So, the reliability of nonlinear RHA should be provided to be adopted in replace of equivalent linear analysis. In this paper, the reliability of nonlinear RHA is reviewed for a layered soil layer using Loma Prieta earthquake records in 1989. For this purpose, the appropriate way for selecting nonlinear soil models and the effect of base boundary condition for 3D analysis are evaluated. As a result, there is no significant differences between equivalent linear and nonlinear RHA. In case of 3D analysis, absorbing boundary condition should be applied at base to prevent rocking motion of the whole model.