DOI QR코드

DOI QR Code

Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake -

비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 -

  • Liu, Qihang (Dept. of Civil and Environmental Eng., Wonkwang Univ.) ;
  • Lee, Jin-Sun (Dept. of Civil and Environmental Eng., Wonkwang Univ.)
  • 유계항 (원광대학교 토목환경공학과) ;
  • 이진선 (원광대학교 토목환경공학과)
  • Received : 2017.10.10
  • Accepted : 2017.11.09
  • Published : 2017.12.31

Abstract

As many seismic codes for various facilities are changed into a performance based design code, demand for a reliable nonlinear response-history analysis (RHA) arises. However, the equivalent linear analysis has been used as a standard approach since 1970 in the field of site response analysis. So, the reliability of nonlinear RHA should be provided to be adopted in replace of equivalent linear analysis. In this paper, the reliability of nonlinear RHA is reviewed for a layered soil layer using Loma Prieta earthquake records in 1989. For this purpose, the appropriate way for selecting nonlinear soil models and the effect of base boundary condition for 3D analysis are evaluated. As a result, there is no significant differences between equivalent linear and nonlinear RHA. In case of 3D analysis, absorbing boundary condition should be applied at base to prevent rocking motion of the whole model.

최근 들어 시설물별 내진설계기준이 성능기반 내진설계로 전환됨에 따라, 신뢰성있는 비선형 응답이력해석(Response-history analysis, RHA)에 대한 요구가 높아지고 있다. 그러나, 부지응답해석 분야에 있어서는 1970년대 이후 등가선형 해석이 표준절차로 자리잡고 있음에 따라, 이를 대체하기 위해서는 비선형 응답이력해석의 신뢰성이 확보되어야 한다. 본 논문에서는 1989년 미국 Loma Prieta 지진기록을 바탕으로 다층지반에 대해서 비선형 RHA를 이용한 부지응답해석 결과의 신뢰성을 검증하였다. 이를 위하여, 비선형 RHA를 위한 비선형 지반모델의 선정방법과 3차원 해석시 요구되는 기반암 경계조건의 영향을 평가 하였다. 평가 결과, 제한된 조건하에서 가장 정확한 비선형 지반모델과 경계조건을 적용 시 비선형 RHA의 결과는 등가선형 해석결과와 유의미한 차이는 발생하지 않음을 알 수 있었다. 또한, 3차원 해석을 시행하는 경우, 전체 모델의 회전운동을 제어하기 위하여 최 하단부 흡수 경계조건을 적용해야 함을 알 수 있었다.

Keywords

References

  1. Bardet, J.P., Ichii, K., and Lin, C.H. (2000), EERA (A Computer Program for Equivalent-linear Earthquake site Response Analyses of Layered Soil Deposit), University of Southern California.
  2. Kim, B.M., Hashash, Y.M.A., Stewart, J.P., Rathje, E.M., Harmon, J.A., Musgrove, M.I., Campbell, K.W., and Silva, W.J. (2016), "Relative Differences between Nonlinear and Equivalent-linear Site Response Analyses", Earthquake Spectra, Vol.32, No.1, pp.1845-1865. https://doi.org/10.1193/051215EQS068M
  3. Chopra, A.K. (1995), Dynamics of Structures, Prentice Hall, New Jersey, USA, ISBN 0-13-855214-2, pp.174-183.
  4. Hardin, B.O. and Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils: Design Equations and Curves", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692.
  5. Idriss, I.M. and Seed, H.B. (1968), "Seismic Response of Horizontal Soil Layers", Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM4. pp.1003-1031.
  6. Idriss, I.M. and Sun, J.I. (1992), User's Manual for SHAKE91, A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits, Program Modified based on the original SHAKE program published in December 1972 by Schnabel, Lysmer & Seed, Report, Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, University of California, Davis.
  7. Idriss, I.M. (1995), Assessment of Site Response Analysis Procedures, ReportNo. NIST GCR 95-667, NIST.
  8. Itasca Consulting Group (2011), FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Guide, Minnesota, USA.
  9. Joyner, W.B. and Chen, A.T.F. (1975), "Calculation of Nonlinear Ground Response in Earthquakes", Bulletin of Seismological Society of America, Vol.65, No.5, pp.1315-1336.
  10. Lee, J.S., Choo, Y.W., and Kim, D.S. (2009), "A Modified Parallel IWAN Model for Cyclic Hardening Behavior of Sand", Soil Dynamics and Earthquake Engineering, Vol.29, pp.630-640. https://doi.org/10.1016/j.soildyn.2008.06.008
  11. Lee, J.S. (2013), "Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test", Journal of Earthquake Engineering, EESK, Vol.17, No.5, pp.209-217. https://doi.org/10.1080/13632469.2012.707346
  12. Lee, J.S. and Noh, G.D. (2015), "Effect of Cyclic Soil Model on Seismic Site Response Analysis", Journal of the Korean Geo-Environmental Society, Vol.16, No.12, pp.23-35. https://doi.org/10.14481/JKGES.2015.16.12.23
  13. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite Dynamic Model for Infinite Media", Journal of Engineering Mechanics, Vol.95, No.4, pp.859-877.
  14. Mejia, L.H. and Dawson, E.M. (2006), "Earthquake Deconvolution for FLAC", Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0-9767577-0-2.
  15. Pyke, R. (1979), "Nonlinear Soil Models for Irregular Cyclic Loadings", Journal of Geotechnical Engineering, ASCE, Vol.105, No.GT6, pp.715-726.
  16. Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), "SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites", Report No. UCBIEERC-72/12, Earthquake Engineering Research Center, University of California, Berkeley.
  17. Seed, H.B. and Idriss, I.M. (1970), Soil Moduli and Damping Factors for Dynamic Response Analysis, Report No. UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley.
  18. Stewart, J.P., Annie, O-L.K., Hashash, YMA., Matasovic, N., Pyke, R., Wang, Z., and Yang, Z. (2008), "Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures", PEER Report 2008/04, UC Berkeley.
  19. Yoshida, N. and Towhata, I. (1997), YusaYusa-2/Simmdl-2 Theory and Practice, Sato Kogyo Co. Ltd.
  20. Vucetic, M. and Dobry, R. (1991), "Effect of Soil Plasticity on Cyclic Response", Journal of Geotechnical Engineering, ASCE, Vol.111, No.GT1, pp.89-107.