• Title/Summary/Keyword: soil acidity

Search Result 285, Processing Time 0.032 seconds

Effects of Soil Environments by Location on the Cambium Electric Resistance of Pinus thunbergii in Urban Park and Open Space (도시공원녹지의 입지별 토양특성이 곰솔의 형성층 전기저항에 미치는 영향)

  • Park, Seung-Burm;Nam, Jung-Chil;Kim, Seok-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The purpose of this study is to propose rational methods in order to maintain vegetation condition and soil environment based on the analysis of tree growth in relation to the soil environment, which is one of the most significant environmental factors on vegetation condition in urban parks and open spaces. The result of the study can be described as below;The soil on every study site had strong acidity. In particular, study sites around industrial district and central business district showed extreme soil acidity. Therefore, soil management system is needed in urban parks and green spaces around those areas. Among Cambium Electric Resistance classified by locations of urban parks and open spaces, one in the costal area was the lowest. The Cambium Electric Resistance in the industrial area was the highest. Therefore, soil condition and locational environment in the industrial area are highly related to the Cambium Electric Resistance. Among the factors, which affect Cambium Electric Resistance in different locations, inorganic content was found to be the main factor in all of the study sites. Inorganic content was an important factor to the Cambium Electric Resistance in study sites located in industrial and central business districts. In the study sites located in costal area, Soil acidity was found to be other important factors that affect Cambium Electric Resistance. To improve the soil acidity, soil buffering ability should be improved from activating microorganisms in the soil by using lime and organic material, Since it takes a long time to make a change in the soil structure, well planed maintenance system is required by mid-term or long-term plans.

Analysis of the Ecological Characteristics of Vegetation in the Area Adjacent to Sasang Industrial Complex in Pusan Metropolitan City (사상공단 주변 식생의 생태적 특성 분석)

  • 박승범;김석규;남정칠;김승환;강영조;이기철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • This study was conducted to analyze the change of soil characteristics effect on the condition of urban forest in Sasang parti located near Sasang Industrial Complex. The results of this study are as follows; 1. Soil hardness is increasing from the area of forest, to the entrance, to facilities in that order. Soil acidity pH4.19∼4.23 in Sasang park indicated a high acidity condition. High levers of K, Na, Mg, Ca are shown in the areas composed of high soil hardness. 2. Pinus thunbergii in the overstory tree layer, Alnus japonica in the understory tree layer, and Rhus sylvestris in the shurb layer are shown respectively as dominant species based on the ground survey and the compution of important value. Pinus thunbergii is decreasing, while Alnus japonica and increasing. 3. Oplismenus undulatifolius which has a strong tolerance for air pollution, is shown as a dominant species of herbaceous plants in Sasang park. There are 10 species of Harbaceous in Sasang park compared to 20 species in Molundae park. This shows that deversity in herbaceous plants are imported by air pollution. 4. Species diversity indices of Sasang park is 0.8738∼0.9700 compared to 1.0817∼ 1.233 in Molundae park is due to the good condition of soil environment in addition to air pollution effects. 5. The vitality of Pinus thunbergii is 16.41∼20.42ER in Sasang park, and 12.42∼ 16.81ER, in Molundae park. This shows that tree vitality are impacted by soil characteristics. The regression analysis between tree vitality and soil environment shows the effects of is soil hardness, soil moisture, soil acidity, K, Na, Mg, Ca.

Effects of Soil Fertilizers on Was Content, Contact Angle, Mineral Nutrient Content of Japanese Red Pine(Pinus densiflora Sieb. et Zucc.) Leaves and Soil Acidity of Japanese Red Pine Communities in Na (남산과 광릉지역 소나무림 토양시비가 소나무잎의 왁스함량, 접촉각 및 무기양이온 함량과 토양산도에 미치는 영향)

  • 최기영;이용범;조영렬;이경재
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.255-262
    • /
    • 1996
  • This study was carried out to investigate the effects of soil fertilizers on wax content, contact angle, mineral nutrient content of Japanese red pine (Pinus densiflora Sieb, et Zucc.) leaves and soil acidity of Japanese red pine communities in Namsan and Kwangnung to see whether they can recover forest decline. Japenese red pine communities were treated with $Ca(OH)_2$, $Mg(OH)_2$, $Ca(OH)_2+Mg(OH)_2$+C.F.(compound fertilizer) in a randomized complete block design with 3 replication from November, 1990 through October, 1993. Wax content, contact angle value and mineral nutrient content of Japanese red pine leaves and soil pH of communities were measured and the results obtained are as follows: 1. Contact angle value and wax content of Japenese red pine leaves increased when the fertilizers were applied in soil. The order leaves grew, the smaller their contact angle values. 2. K and Ca contents of Japanese red pine leaves were higher in Namsan than in Kwangnung, whereas Mg content was higher in Kwangnung. K and Mg contents of the leaves increased with fertilization both in Namsan and Kwangnung. 3. Soil acidity of pH 4.2 ~ 4.3 was shown in Namsan and pH 4.6 ~ 4.9 in Kwangnung. No acidity changes were shown when the fertilizers were applied in soil. However with the lapse of the soil fertilizer application time, there was the indication that soil pH became higher in the fertilizer treatments than in the control.

  • PDF

Effects of Simulated Acid Rain on Soil Chemical Properties (인공산성비 처리가 토양의 화학적 성질에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.400-406
    • /
    • 1998
  • To investigate the effect of simulated acid rain on the change in soil chemical properties, simulated acid rain of different pH was applied to the three soils of different texture. Simulated acid rain of pH 4.0 and 6.0 did not greatly change the soil pH, while simulated acid rain of pH 2.0 decreased greatly the soil pH. Decrease in soil pH were in the order of sandy loam > loam > clay loam, while increase in exchangeable acidity was in the order of clay loam > loam > sandy loam. Amount of nutrients leached downward due to the penetration of simulated acid rain into the soil was in the order of Ca > K > Mg. Exchangeable Al was not detected when soil acidity dropped to pH 5 and exchangeable acidity increased within a range of CEC. A total 1200mm of simulated acid rain(pH 3.0) can load $12kg\;ha^{-1}$ of $H^+$ ion, $128kg\;ha^{-1}$ of sulfur, $56kg\;ha^{-1}$ of nitrogen. The acidity of simulated acid rain pH 3.0 can be neutralized by addition of $444kg\;ha^{-1}$ of slaked lime. The amount of leached bases were equivalent to 923, 1731 and $1608kg{\cdot}ha^{-1}$ in sandy loam, loam and clay loam soil respectively.

  • PDF

The Ecological Vegetation by the Neutralizing Treatment Techniques of the Acid Sulfate Soil (특이산성토의 중화처리기법에 따른 생태적 녹화)

  • Cho, Sung-Rok;Kim, Jae-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.47-59
    • /
    • 2019
  • This study was composed of four treatments [no treatment, phosphate + limestone layer treatment, phosphate + sodium bicarbonate + cement layer treatment, and phosphate + sodium bicarbonate + limestone layer treatment] for figuring out vegetation effects on the acid drainage slope. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: phosphate + sodium bicarbonate + limestone layer treatment, second: phosphate + sodium bicarbonate+cement layer treatment, third: phosphate + limestone layer treatment and fourth: no treatment] on the acid drainage slope. We found out that sodium bicarbonate treatment was additory effect on neutralizing acidity and increasing vegetaive growth besides phosphate and neutralizing layer treatments. In neutralizing layer treatments, Limestone layer was more effective for vegetation and acidity compared to cement layer treatment. Cement layer showed negative initial vegetative growth probably due to high soil hardness and toxicity in spite of acid neutralizing effect. Concerning plants growth characteristics, The surface coverage rates of herbaceous plants, namely as Lotus corniculatus var. japonicus and Coreopsis drummondii L were high in the phosphate + sodium bicarbonate + limestone layer treatment while Festuca arundinacea was high in the phosphate + sodium bicarbonate + cement layer treatment. We also figured out that soil acidity affected more on root than top vegetative growth.

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 11. The Cycles of Al (관악산의 잔디와 억새 생태계에 있어서 에너지 흐름과 무기물의 순환 11.알루미늄의 순환)

  • 심규철;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.4
    • /
    • pp.303-309
    • /
    • 1997
  • The investigation was cycle of aluminum of surface soil elements in dynamic grassland ecosystems at a steady state in a Zoysia japonica and a Miscanthus sinensis ecosystem in Mt. Kwanak, Korea. Average amounts of total storage for aluminum in Z japonica and M. sinensis grasslands were 8,426mg /$m^2$ and 7,849mg /$m^2$ respectively. Decay constants estimated on the base of experimental and mathematical model, were 0.04 in Z japonica grassland, and 0.08 in M. sinensis grassland. Half time to decay aluminum of litter soils were 17.33 years in Z japonica grass-land, and 8.66 years in Al. sinensis grassland. 95% decay times in Z japonica, and in M. sinensis grassland were 75.0 years and 35.0 years respectively. Needed times to lose almost all of elements in Z japonica and M. sinensis grassland were 125.0 years, and 62.50 years respectively. The metals were losed more rapidly in M. sinensis than in Z japonica grassland. The cycle of aluminum was investigated to be related with soil acidity. Key words: Cycle of aluminum, Zoysia japonica. Miscanthus sinensis, Mt. Kwanak, Decay constants, Soil acidity.

  • PDF

Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy

  • Hong, Suk Young;Lee, Kyungdo;Minasny, Budiman;Kim, Yihyun;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.319-323
    • /
    • 2014
  • This study investigates the prediction of soil chemical properties (organic matter (OM), pH, Ca, Mg, K, Na, total acidity, cation exchange capacity (CEC)) on 688 Korean soil samples using the visible-near infrared reflectance (VIS-NIR) spectroscopy. Reflectance from the visible to near-infrared spectrum (350 to 2500 nm) was acquired using the ASD Field Spec Pro. A total of 688 soil samples from 168 soil profiles were collected from 2009 to 2011. The spectra were resampled to 10 nm spacing and converted to the 1st derivative of absorbance (log (1/R)), which was used for predicting soil chemical properties. Principal components analysis (PCA), partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil chemical properties. The regression rules model (Cubist) showed the best results among these, with lower error on the calibration data. For quantitatively determining OM, total acidity, CEC, a VIS-NIR spectroscopy could be used as a routine method if the estimation quality is more improved.

Effects of Location and Soil Characteristics on the Vegetation Structure and Tree Vitality of Urban Park and Green Open Space (도시공원녹지의 입지환경과 토양특성이 식생구조와 수목활력도에 미치는 영향)

  • Kim, Seok-Kyu;Park, Seung-Burm;Nam, Jung-Chil;Kim, Seung-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.30-44
    • /
    • 2002
  • This study is conducted to analyze the change of location and soil characteristics effect on the condition of urban forest in Urban Park and Green Open Space The results of this study are as fallows; 1. Soil acidity is indicated pH 3.88 in Sasang park, pH 4.38 in Hwaji park, pH 4.40 in Daeyeon park, pH 4.68 in Sanseong amusement park, pH 5.15 in Molundae amusement park. 2. Species diversity indices of indicated Sasang park 0.9932, Hwaji park 1.1975, Daeyeon park 1.2160, Sanseong amusement park 1.3080, Molundae amusement park 1.3233 is due to location and soil environment in addition to air pollution effects. 3. The vitality of Pinus thunbergii 27.5ER in Sasang park, 24.9ER in Hwaji park, 24.5ER in Daeyeon park, 23.6ER in Sanseong amusement park, 21.0ER in Molundae park. This shows that tree vitality are impacted by location and soil characteristics. On the basis of the result above, vegetation devices are suggested : 1) Robinica pseudo-acacia management, 2) removing the hazard plants; Smilax china, Humulus japonicus, Pueraria thungergiana, 3) improving soil hardness and soil acidity.

Analysis of Interspecific Association and Ordination on the Forest Vegetation of Mt. Odae (오대산 삼림식생의 종간친화력 및 서열분석)

  • 이호준;변두원;김창호
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.291-300
    • /
    • 1998
  • The forest vegetation of Mt. Odae based on the interspecific relationship was classified into 4 groups : Quercus mongolica, Pinus densiflora, Quercus variabilis and Patrinia saniculaefolia. Thirty-one species of Quercus mongolica group including Quercus mongolica and Acer mone, 12 species of Pinus densiflora group comprising Pinus densiflora and Spodiopogon sibiricus, 6 species of Quercus variabilis group and 4 species of Patrinia saniculaefolia were positively correlated. in the results of species ordination by principal component analysis, 7 clusters by the humidity and acidity of soil, 4 clusters by the humidity and light intensity and 7 clusters by the acidity and light intensity were formed. The plot ordination showed that the distribution of species based on the humidity, soil acidity and total organic matters was in the order of Pinus densiflora, Quercus variabilis and Quercus mongolica groups, and based on the light intensity was in the order of Quercus variabilis, Pinus densiflora and Quercus mongolica groups.

  • PDF

Physicochemical Properties of Soil in Pine (Pinus densiflora for. erecta Uyeki) Forests (금강형 소나무림에 있어서 토양의 이화학적 성질)

  • Joo, Sung-Hyun;Jung, Sung-Cheol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.31-37
    • /
    • 2001
  • Uyeki(1928) classified Pinus densiflora into six ecotypes(Northeastem type, Middle-southern flat type, middle-southern upland type, Wibong type, Ankang type, and Geumgang type) based on the pine tree type. The bark color of Geumgang type was ash-brown color on the lower parts of stem and yellowed color on the upper parts of stem. We investigated the physicochemical properties of soil forests to obtain basic data for preservation of exellent pine (Pinus densiflora for. erecta Uyeki). The results were as follows; The soil texture of the Pinus densiflora for. erecta Uyeki forests were showed nearly as sandy loam, that is, sand, silt and clay were consisted of 72%, 15% and 13%, respectively. Soil acidity(pH 4.6) was lower than Korea average forest soil acidity(pH 5.2). The average contents of available phosphate was 11.7ppm at Sokwang-ri, 26.8ppm at Mt. Eungbong, 24.2ppm at Mt. Kumma. It was the lowest at Uljin(4.6ppm). The contents of carbon was 6.2% at Mt. Chungok, 6.1% at Mt. Eungbong. This value was more than average of Korea forest soil.

  • PDF