• Title/Summary/Keyword: soil DNA

Search Result 629, Processing Time 0.024 seconds

Comparison of Phylogenetic Characteristics of Bacterial Populations in a Quercus and Pine Humus Forest Soil (활엽수림과 침엽수림 부식토 내 세균군집의 계통학적 특성 비교)

  • Han, Song-Ih;Cho, Min-Hye;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Chemical and microbial characteristics of bacterial populations were investigated in a quercus and pine humus forest soil. Soil pH was $5.3\pm0.4$ and $4.1\pm0.9$ from each sample of a quercus and pine humus forest soil; C/N ratio of humus forest soil was $17.84\pm4.6%$ and $21.76\pm8%$, respectively. Total organic acid was investigated as 69.57 mM/g dry soil and 53.72 mM/g dry soil in each humus forest soil. Glutamine, pyruvate, succinate, lactic acid and acetic acid of pine humus forest soil were $1.5\sim4.5$ times higher than those of quercus humus forest soil. As we evaluated phylogenetic characteristics of bacterial populations by 16S rRNA-ARDRA analysis with DNA extracted from each humus forest soil. Based on the 16S rRNA sequences, 44 clone from ARDRA groups of quercus humus forest soil were classified into 7 phyla: ${\alpha},{\beta},{\gamma},{\delta}$-Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes. Thirty-two clone from ARDRA groups of pine humus forest soil were classified into 8 phyla: ${\alpha},{\beta},{\gamma}$-Proteobacteria, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes, and Gemmatomonadetes. According to PCA (Principal Component Analysis) based on 16S rRNA base sequence, there were three main groups of bacteria. All clone of Cluster I were originated from quercus humus forest soil, while 67% clone of Cluster II and 63% clone of Clusters III were separated from pine humus forest soil.

Phylogenetic Characteristics of Bacterial Populations Found in Serpentinite Soil (초염기성 사문암 토양 중 세균군집의 계통학적 특성)

  • ;Tomoyoshi Hashimoto
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.16-20
    • /
    • 2003
  • A phylogenetic analysis of bacterial populations inhabiting soil derived from serpentine was conducted. The samples were collected from adjacent metamorphic rocks and serpentinite soil at Kwangcheon. The pH of the serpentine areas ranged from 8.5 to 9.2. The number of bacteria on the DAL medium which was diluted with $10^{-2}$ of AL medium was 10~100 fold higher than that from the full strength of AL medium, and which indicates that oligotrophs are distributed in the serpentinite soil. Of a total of 76 isolates, 42 isolates were oligotrophic bacteria, which grew only on the DAL medium. Based on a phylogenetic analysis using 16S rDNA sequences, these isolates are found to fall within five major phylogenetic groups: proteobacteria $\alpha$-subdivision (3 strains), $\alpha$-subdivision (7 strains), $\gamma$-subdivision (2 trains); high G+C gram-positive bacteria (19 strains); low G+C grampositive bacteria (14 strains). Bacteria of the genus Streptomyces (high G+C division) and Bacillus (low G+C division) have been considered to form a numerically important fraction of serpentinite soil. Oligotrophic strains categorized as Afipia ($\alpha$-subdivision), Ralstonia, Variovorax ($\beta$-subdivision), Pseudomonas ($\gamma$ -subdivision), Arthrobacter (high G+C division), and Streptomyces (low G+C division).

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil

  • Ji Ho Lee;Hyoju Yang;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.886-894
    • /
    • 2023
  • During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.

Taxonomic Study of Bacillus coagulans by Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization Technique (DNA-DNA Hybridization에 의한 Bacillus coagulans의 분류학적 연구)

  • Chung, Chi-Kwan
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.166-178
    • /
    • 1976
  • Taxonomic study of 11 strains of Bacillus coagulans and 14 strains of 13 spccies of Bacillus by deoxyribonucleic acid (DNA)-DNA hybridization were conducted. Among the 11 strains of B. coagulans, 6 were isolated from soil and the rest were the authentic strains obtained from American Type culture collection (ATCC) or the Institute for Fermentation, Osaka (IFO). All strains were examined to confirm as they are expected species of B. coagulans by the methods of Cordon et al. according to Bergey's Manual (8th ed.). The intraspecific DNA homology indexes among the 11 strains of B. coagulans using strain ATCC 7050 as the standard ($^3$H labeled input DNA) showed 76% or, more, respectively. These findings accorded well with the results of the conventional taxonomic study according to the Bergey's Manual. The interspecific DNA homology indexes between B. coagulant strain ATCC 7050 and the type cultures of B. subtilis (168), B. licheniformis (IFO 12107), B. pumilus (IFO 12110), B. firmus (ATCC 14575), B. lentus (ATCC 10840), B. circulans (ATCC 4513), B. macelans (ATCC 8244), B. polymyxa (ATCC 842), B. sphaericus (ATCC 14577), B. brevis (ATCC 8246, IFO 12334), B. laterosporus (ATCC 64), and B. pantothenticus (ATCC 14576) respectively, showed 2 to 4%, while that of between B. coagulans ATCC 7050 and Escherichia coli K-12 was less than 1 %.

  • PDF

Detection of Rhizina undulata in Soil by Nested-PCR Using rDNA ITS-specific Primer

  • Lee, Sun Keun;Lee, Jong Kyu;Lee, Seung Kyu;Kim, Kyung Hee;Lee, Sang Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.585-590
    • /
    • 2007
  • Rhizina undulata is the fungus, which causes Rhizina root rot on coniferous trees. Nested-PCR using ITS-specific primer was applied to detect R. undulata from the soils of Japanese black pine (Pinus thunbergil) forests infested with the disease in Seocheon, Chungnam Province, South Korea. Soil samples were collected from four different sites, both dead trees and fruit bodies of R. undulata were present, dead trees only present, fruit bodies only present, and both were absent. Nested-PCR products specific to R. undulata ITS-region were amplified. Positive reactions were found in some samples from the sites, where dead trees and fruit bodies of R. undulata were absent as well as where both of those were present. R. undulata was mainly detected in the soil samples from the depth of 5~20 cm under the soil surface. These results show that the nested-PCR could be used to diagnose the presence or potential infestation of R. undulata in the soils of pine forests.

Advances in Soil Microbial Ecology and the Ecocollections

  • Whang Kyung-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.81-85
    • /
    • 2002
  • Oligotrophic bacteria isolated from forest soil showed a specific community consisting of various taxonomic groups compared with those in other soil or aquatic habitats. Based on the cell shape, the isolates were divided into four groups: regular rod, curved/spiral rod, irregular rod, and prosthecate bacteria. The cellular fatty acids 60 oligotrophic isolates were analyzed. At the dendrogram based on cellular fatty acid composition, four clusters(I-IV) were separated at a euclidian distance of about 50. Based on the 16S rDNA sequence analysis, the two representative strains(MH256 and MA828) of cluster 3 showed the close relation to genera, Xathomonas/Stenotrophomonas, but were not included in these genera. The isolates with Q-10 were also studied. They are corresponded to the two large groups in Proteobacteria alpha subdivision. One was incorporated in the genus Bradyrhizobium cluster, which also includes Agromonas, a genus for oligotrophic bacteria. The strains of the other group showed high similarity to the genus Agrobacterium. We attempted to screening of bioactive compounds from oligotrophs which was isolated from forest soil. The active compounds were analyzed by mass and NMR spectrum, one of them identified as crisamicin A. Another one designated as SAPH is a new compound. The results indicate that there were possibilities for finding new compounds from the rare microorganisms such as oligotrophs.

  • PDF

Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast

  • Sha, Yuexia;Zeng, Qingchao;Sui, Shuting
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. The aim of this study was to screen bacterial isolates to efficiently prevent the occurrence of rice blast. A total of 232 bacterial isolates were extracted from nonrhizospheric rice soil and were screened for antifungal activity against M. oryzae using a leaf segment assay. Strains S170 and S9 showed significant antagonistic activity against M. oryzae in vitro and in leaf disk assays, and controlled M. oryzae infection under greenhouse conditions. The results showed that strains S170 and S9 could effectively control rice leaf blast and panicle neck blast after five spray treatments in field. This suggested that the bacterial strains S170 and S9 were valuable and promising for the biocontrol of rice disease caused by M. oryzae. Based on 16S rDNA, and gyrA and gyrB gene sequence analyses, S170 and S9 were identified as Bacillus amyloliquefaciens and B. pumilus, respectively. The research also demonstrated that B. amyloliquefaciens S170 and B. pumilus S9 could colonize rice plants to prevent pathogenic infection and evidently suppressed plant disease caused by 11 other plant pathogenic fungi. This is the first study to demonstrate that B. amyloliquefaciens and B. pumilus isolated from nonrhizospheric rice soil are capable of recolonizing internal rice stem tissues.

Identification and Biochemical Characterization of a New Xylan-degrading Streptomyces atrovirens Subspecies WJ-2 Isolated from Soil of Jeju Island in Korea (제주도 토양으로부터 자일란 분해 Streptomyces atrovirens subspecies WJ-2 동정 및 효소의 생화학적 특성 규명)

  • Kim, Da Som;Bae, Chang Hwan;Yeo, Joo Hong;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.512-521
    • /
    • 2016
  • A bacterial strain was isolated from a soil sample collected on Jeju Island, Korea. The strain, designated WJ-2, exhibited a high xylanase activity, whereas cellulase activity was not detected. The 16S rRNA gene sequence of WJ-2 was highly similar to type strains of the genus Streptomyces. A neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WJ-2 is phylogenetically related to Streptomyces atrovirens. Furthermore, DNA-DNA hybridization analysis confirmed that strain WJ-2 is a novel subspecies of Streptomyces atrovirens. The genomic DNA G+C content was 73.98 mol% and the major fatty acid present was anteiso-C15:0 (36.19%). The growth and xylanase production of strain WJ-2 were significantly enhanced by using soytone and xylan as nitrogen and carbon sources, respectively. Crude enzyme preparations from the culture broth of strain WJ-2 exhibited maximal total xylanase activities at pH 7.0 and $55^{\circ}C$. Thin-layer chromatography analysis revealed that the crude enzyme degrades beechwood xylan to yield xylobiose and xylotriose as the principal hydrolyzed end products.

Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N.;Im Wan-Taek;Baek Sang-Hoon;Lee, Jung-Sook;Oh, Hee-Mock;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1554-1560
    • /
    • 2006
  • A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.