Browse > Article
http://dx.doi.org/10.4014/mbl.1609.09003

Identification and Biochemical Characterization of a New Xylan-degrading Streptomyces atrovirens Subspecies WJ-2 Isolated from Soil of Jeju Island in Korea  

Kim, Da Som (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Bae, Chang Hwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Yeo, Joo Hong (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Chi, Won-Jae (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.4, 2016 , pp. 512-521 More about this Journal
Abstract
A bacterial strain was isolated from a soil sample collected on Jeju Island, Korea. The strain, designated WJ-2, exhibited a high xylanase activity, whereas cellulase activity was not detected. The 16S rRNA gene sequence of WJ-2 was highly similar to type strains of the genus Streptomyces. A neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WJ-2 is phylogenetically related to Streptomyces atrovirens. Furthermore, DNA-DNA hybridization analysis confirmed that strain WJ-2 is a novel subspecies of Streptomyces atrovirens. The genomic DNA G+C content was 73.98 mol% and the major fatty acid present was anteiso-C15:0 (36.19%). The growth and xylanase production of strain WJ-2 were significantly enhanced by using soytone and xylan as nitrogen and carbon sources, respectively. Crude enzyme preparations from the culture broth of strain WJ-2 exhibited maximal total xylanase activities at pH 7.0 and $55^{\circ}C$. Thin-layer chromatography analysis revealed that the crude enzyme degrades beechwood xylan to yield xylobiose and xylotriose as the principal hydrolyzed end products.
Keywords
Xylanase; Streptomyces atrovirens; identification; xylanase production; characterization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type $\beta$-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759.   DOI
2 Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Altermonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Altermonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163.   DOI
3 Vazquez MJ, Alonso JL, Dominguez H, Parajo JC. 2001. Xylooligosaccharides: Manufacture and applications. Trends Food Sci. Technol. 11: 387-393.
4 Wang SL, Yen YH, Shih IL, Chang AC, Chang WT, Wu WC, et al. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb. Technol. 33: 917-925.   DOI
5 Yan Q, Hao S, Jiang Z, Zhai Q, Chen W. 2009. Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. J. Mol. Catal. B Enzym. 58: 72-77.   DOI
6 Achary AA, Prapulla SG. 2009. Value addition to corncob: Production and characterization of xylo-oligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC5154. Bioresour. Technol. 100: 991-995.   DOI
7 Al-Bari MAA, Bhuiyan MSA, Flores ME, Petrosyan P, Garcia-Varela M, Islam MAU. 2005. Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl) phthalate. Int. J. Syst. Evol. Microbiol. 55: 1973-1977.   DOI
8 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, et al. 1990. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-402.
9 Bajaj BK, Singh NP. 2010. Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl. Biochem. Biotechnol. 162: 1804-1818.   DOI
10 Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555.   DOI
11 Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338.   DOI
12 Biely P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 11: 286-290.
13 Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, et al. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617.   DOI
14 Kallel F, Driss D, Chaabouni SE, Ghorbel R. 2015. Biological activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK. Appl. Biochem. Biotechnol. 175: 950-964.   DOI
15 Gupta S, Kuhad RC, Bhushan B, Hoondal GS. 2001. Improved xylanase production from a haloalkaliphilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J. Microbiol. Biotechnol. 17: 5-8.   DOI
16 Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Lydiate DJ, et al. 1985. Genetic manipulation of Streptomyces, A Laboratory Manual, Norwich, UK: The John Innes Foundation.
17 Hwang IT, Lim HK, Song HY, Cho SJ, Chang JS, Park NJ. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol. Adv. 28: 594-601.   DOI
18 Kimura M. 1983. The neutral theory of molecular evolution. Cambridge, UK: Cambridge University Press.
19 Chi WJ, Lim JH, Park DY, Park JS, Hong SK. 2013. Production and characterization of a thermostable endo-type $\beta$-xylanase produced by a newly-isolated Streptomyces thermocarboxydus subspecies MW8 strain from Jeju Island. Proc. Biochem. 48: 1736-1743.   DOI
20 Kieser H, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom.
21 La Duc MT, Kern R, Venkateswaran K. 2004. Microbial monitoring of spacecraft and associated environments. Microbial. Ecol. 47: 150-158.   DOI
22 Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW. 2006. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10: 295-300.   DOI
23 Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.   DOI
24 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
25 El-Sersy NA, Abd-Elnaby H, Abou-Elela GH, Ibrahim AHA, El-Toukhy NMK. 2010. Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. Afr. J. Biotechnol. 9: 6355-6364.
26 Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI
27 Dhiman SS, Sharma J, Battan B. 2008. Industrial applications and future prospects of microbial xylanases: a review. Bioresources 3: 1377-1402.
28 Elegir G, Szakacs G, Jeffries TW. 1994. Purification, characterization, and substrate specificities of multiple xylanases from Streptomyces sp. Strain B-12-2. Appl. Environ. Microbiol. 60: 2609-2615.
29 Gause GF, Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP, Maximova TS. 1983. A guide for the determination of actinomycetes. Genera Streptomyces, Streptoverticillium, and Chainia. Moscow, USSR: Nauka.
30 Georis J, Giannotta F, Buyl ED, Granier B, Frere JM. 2000. Purification and properties of three endo-$\beta$-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb. Technol. 26: 178-186.   DOI
31 Grabski AC, Forrester IT, Patel R, Jeffries TW. 1993. Characterization and N-terminal amino acid sequences of beta-(1-4) endoxylanases from Streptomyces roseiscleroticus: purification incorporating a bioprocessing agent. Protein Expr. Purif. 4: 120-129.   DOI
32 Techapum C, Charoenrat T, Watanabe M, Sasaki K, Poosara N. 2002. Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design. Biochem. Eng. J. 12: 99-105.   DOI
33 Ninawe S, Kapoor M, Kuhad RC. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258.   DOI
34 Ruiz-Arribas A, Fernandez-Abalos JM, Sanchez P, Garda AL, Santamaria RI. 1995. Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl. Environ. Microbiol. 35: 2414-2419.
35 Satomi M, Kimura B, Hamada T, Harayama S, Fujii T. 2002. Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int. J. Syst. Evol. Microbiol. 52: 739-747.
36 Shin JH, Choi JH, Lee OS, Kim YM, Lee DS, Kwak YY, et al. 2009. Thermostable xyalanse from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. Biotechnol. Bioprocess Eng. 14: 391-399.   DOI
37 Subramanian S, Sandhia GS, Prema P. 2001. Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source. Biotechnol. Lett. 23: 369-371.   DOI
38 Nath D, Rao M. 2001. pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59). Enzyme Microb. Technol. 28: 397-403.   DOI