• 제목/요약/키워드: software-engineering

검색결과 12,547건 처리시간 0.032초

임의 두 지점의 웹 카메라와 퍼지 가비지 모델을 이용한 사용자의 의미 있는 동작 검출 (Gesture Spotting by Web-Camera in Arbitrary Two Positions and Fuzzy Garbage Model)

  • 양승은
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.127-136
    • /
    • 2012
  • 각종 지능형 전자장비의 개발과 사용자 편의성 증대를 위해 영상기반의 손 동작 인식시스템이 다양하게 개발, 적용되고 있다. 손 동작 인식을 위해 손의 3차원 위치를 계산하고 오 동작 방지를 위해 명령 동작을 다른 유사동작과 구분하여 정확히 검출해야 한다. 본 논문에서는 설치가 쉽고 저렴한 비용으로 3차원 위치를 계산하는 시스템과 다양한 유사 동작 중 정의된 동작만을 검출해 내는 방법에 대해 다룬다. 팬/틸트 가능한 두 대의 USB 카메라와 표식을 이용하여 카메라를 임의의 위치에 두더라도 부착된 표식을 통해 자동으로 두 카메라간 상대위치를 구해 3차원 위치를 계산할 수 있다. 사용자의 명령 동작을 다른 유사 동작과 구분하기 위해 퍼지 가비지 모델을 개발 하였는데 퍼지 명령모델과 가비지 모델 두 가지를 이용하여 행동 인식에 대한 가변적 문턱 값을 구할 수 있다. 또한 두 단계의 적응 과정을 통해 각 사용자마다 다르게 나타나는 행동 특성 및 동일 사용자가 환경에 따라 다르게 나타내는 행동 특성을 반영 하여 성능을 개선한다. 개발된 시스템을 5명의 사용자를 대상으로 실험을 실시하였는데 명령 동작과 하나의 유사동작만 있을 경우 95% 이상, 다양한 유사동작이 혼재되어 있을 경우 85%이상의 인식률(명령 동작 검출)을 보였다.

병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법 (A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis)

  • 김영재;김태윤;이승현;김광기;김종효
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.109-114
    • /
    • 2012
  • 봉와양폐(Honeycomb)는 직경 2~10mm 정도의 크기가 같지 않은 낭포(Cyst)가 경계가 명확한 섬유질(Fibrosis)로 이루어진 벽에 둘러싸여 밀집된 형태로 이루어져 있다. 봉와양폐가 발견될 경우 급성악화의 발생 빈도가 높으며 따라서 봉와양폐의 관찰 여부와 측정은 임상에서 중요한 지표가 된다. 따라서 본 논문에서는 봉와양폐 영역의 정량적 측정을 위하여 봉와양폐의 특징을 이용한 형태학적 기법과 군집성 평가 기법을 통해 자동 구획 방법을 제안하였다. 첫 번째로 영상의 잡음을 제거하기 위하여 가우시안 필터링을 적용하고, 모폴로지 기법 중 팽창 기법을 이용하여 폐 영역을 구획하였다. 두번째로, 주변 8방향 검사를 통해 봉와양폐를 구성하는 낭포의 후보군을 찾고, 영역 확장과 외곽선 검사를 통해 비 낭포들을 제거하였다. 마지막으로 군집화 검사를 통해 최종적으로 봉와양폐를 구획하였다. 제안한 방법은 80장의 고해상도 컴퓨터 단층촬영 영상에서 실험한 결과, 89.4%의 민감도와, 72.2%의 양성 예측도를 보였다.

모바일 환경을 위해 에지맵 보간과 개선된 고속 Back Projection 기법을 이용한 Super Resolution 알고리즘 (Super Resolution Algorithm Based on Edge Map Interpolation and Improved Fast Back Projection Method in Mobile Devices)

  • 이두희;박대현;김윤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.103-108
    • /
    • 2012
  • 최근 고성능 모바일기기의 보급과 멀티미디어 콘텐츠의 활용이 커짐에 따라 저해상도 영상을 고해상도로 재구성하는 초해상도(super resolution) 기법이 중요하게 대두되고 있다. 모바일기기에서는 초해상도를 사용하기 위해서는 연산량과 메모리 등의 제한적인 자원의 사용을 고려한 초해상도 알고리즘이 요구된다. 본 논문에서는 모바일기기에 적용하기 위해 단일영상을 통한 빠른 초해상도 기법을 제안한다. 제안한 알고리즘은 색채 왜곡을 방지하기 위해 RGB 컬러 도메인에서 HSV 컬러 도메인으로 변경하여 인간의 시각인지 특성이 가장 뚜렷한 밝기정보인 V만 처리한다. 먼저 잡음제거 및 속도향상을 고려하여 개선된 고속 back projection에 의해 영상을 확대 재구성한다. 이와 함께 2차 미분을 사용하는 LoG (laplacian of gaussian) 필터링을 이용하여 신뢰할 수 있는 에지 맵을 추출한다. 최종적으로 에지 정보와 개선된 back projection 결과를 이용하여 고해상도 영상을 재구성한다. 제안한 알고리즘을 사용하여 복원한 영상은 부자연스러운 인공물을 효과적으로 제거하고, blur현상을 최소화하여 에지 정보를 보정하고 강조해준다. 실험결과를 통해 제안하는 알고리즘이 기존의 보간법이나 전통적인 back projection 결과보다 주관적인 화질이 우수하고, 객관적으로 우수한 성능을 나타냄을 입증한다.

표면분할을 이용한 시차공간상에서의 모델 기반 평면검출 (Model-Based Plane Detection in Disparity Space Using Surface Partitioning)

  • 하홍준;이창훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.465-472
    • /
    • 2015
  • 본 논문에서는 시차공간상의 평면검출 방법을 제안하고 그 성능을 평가한다. 다양한 표면을 평면으로 근사하고 검출함으로써 시차공간에 나타난 장면을 간소화하고 수식화하여 다루기 쉽도록 한다. 또한 시차공간에서 근사적으로 구한 평면은 3차원 공간상에서 실측 크기로 표현 가능하고 장애물 검출 및 카메라 위치 추정에 활용할 수 있다. 먼저 스테레오 매칭 기술을 이용해 두 개의 영상으로부터 2차원 공간상에 좌표쌍마다 시차값을 가지는 시차공간을 생성한다. x 또는 y축의 전체적인 추이를 반영하도록 돕는 선 단순화 기법을 이용하여 시차값의 접선 기울기를 추정한다. 기울기 쌍의 조합에 따라 10개의 라벨을 시차공간의 좌표쌍에 부여한다. 상하좌우 방향으로 인접하고 동일한 라벨을 가지는 좌표쌍을 연결하여 군집을 생성하고 최소자승법을 이용해 각 군집에 대한 평면식을 추정한다. 시차공간 내에서 평면식을 만족하는 점들이 가장 많은 평면을 검출하고 이를 시차공간을 가장 잘 간소화한 N개의 평면으로 선택한다. 평면검출의 성능을 정량적으로 평가하였고 그 결과는 3차원 원뿔과 원통에서 각각 97.9%, 86.6% 품질을 보였다. 스테레오 비전 알고리즘의 성능을 평가하기 위해 대표적으로 이용되는 Middlebury와 KITTI 실험데이터로부터 제안된 평면검출 방법은 훌륭하게 평면을 검출하였다.

트위터 기반 이벤트 탐지에서의 기계학습을 통한 지명 노이즈제거 (Geographical Name Denoising by Machine Learning of Event Detection Based on Twitter)

  • 우승민;황병연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.447-454
    • /
    • 2015
  • 본 논문에서는 트위터 기반 이벤트 탐지에서의 기계학습을 통한 지명 노이즈제거 방식을 제안한다. 최근 스마트폰 이용자의 증가로 소셜 네트워크 서비스(SNS) 이용자가 증가하고 있는 추세이다. 그중 트위터는 140자 이내의 단문서비스와 팔로우 기능으로 정보의 빠른 전달력과 확산성을 가지고 있다. 이러한 특성과 모바일에 최적화된 트위터의 특성상 정보 전달 속도가 매우 빠르기 때문에 재난 상황이나 이벤트 전달의 매개체 역할을 하고 있다. 이와 관련된 연구로는 트위터 사용자 개개인을 이벤트 탐지의 센서로 사용하여 현실에서 발생하는 이벤트를 탐지하였는데 이벤트가 특정 장소에서 발생한다는 특성을 이용해서 지명 키워드를 사용하였다. 그러나 지명과 동형이의어 관계에 관한 노이즈제거에 대한 부분이 누락되어있어서 이벤트 탐지의 정확도를 낮추는 요인이 된다. 이에 본 논문에서는 제거와 예측 두 가지 방식으로 노이즈제거 기법을 적용하였다. 먼저 노이즈 관련 데이터베이스 구축을 이용하여 제거 필터링을 진행한 후에 나이브 베이지안 분류를 이용해서 지명 유무를 결정하였다. 실험 데이터를 이용해서 기계학습을 위한 확률값을 구했으며, 지명마다 본 논문에서 제시하는 예측기법을 검증했을 때 89.6%의 신뢰도로 노이즈제거 기법의 필요성을 보였다.

시계열 데이터 기반의 대칭-불변 윤곽선 이미지 매칭 (Symmetric-Invariant Boundary Image Matching Based on Time-Series Data)

  • 이상훈;방준상;문성우;문양세
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.431-438
    • /
    • 2015
  • 본 논문에서는 대칭 변환을 지원하는 윤곽선 이미지 매칭 문제를 다룬다. 이미지 매칭에서 이미지의 대칭 변환을 지원하는 것은 직관적이고 정확한 매칭을 위한 매우 중요한 요소이다. 그러나 기존 이미지 매칭에서는 이미지의 회전 변환만 고려하였을 뿐 대칭 변환은 고려하지 않았다. 본 논문에서는 기존 회전-불변 윤곽선 이미지 매칭에 대칭 변환까지 지원하는 대칭-불변 윤곽선 이미지 매칭을 제안한다. 이를 위해, 먼저 이미지 대칭의 개념을 정의하고, 어떠한 대칭각을 사용하더라도 회전-불변 매칭의 결과는 동일함을 정형적으로 증명한다. 또한, 대칭 변환을 위해 이미지 윤곽선으로부터 대칭 시계열을 효율적으로 추출하는 방법을 제안한다. 그런 다음, 이미지를 대칭하여 생성한 대칭 시계열과 원본 이미지 시계열을 직접 대칭하여 생성한 대칭 시계열을 사용한 회전-불변 매칭 결과가 동일함을 정형적으로 증명한다. 실험 결과, 제안하는 대칭-불변 윤곽선 이미지 매칭은 회전 변환만을 지원하는 기존 이미지 매칭에 비해 보다 정확하고 직관적인 결과를 도출하는 것으로 나타났다. 이같은 결과는 대칭-불변 윤곽선 이미지 매칭이 이미지의 대칭 변환 문제를 시계열 도메인에서 해결한 우수한 해결책임을 의미한다.

eMRA: MDR의 개념간 관계성을 고려한 MRA 확장 (eMRA: Extension of MRA Considering the Relationships Between MDR Concepts)

  • 주영민;김장원;정동원;백두권
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.161-172
    • /
    • 2013
  • 메타데이터 레지스트리(Metadata Registry, MDR)는 데이터베이스 간 데이터 교환 및 공유를 위해 ISO/IEC에서 개발한 국제 표준이며, 의료 서비스, 서지, 환경 등 다양한 도메인에서 데이터 공유 및 통합을 위해 사용되고 있다. 그러나 MDR 표준은 메타데이터 등록 및 저장을 위한 메타모델만을 정의하고 있기 때문에 이 시스템들은 서로 다른 물리적 구조를 가지게 된다. 이로 인해 MDR 시스템 간 불일치가 발생하고 메타데이터의 상호운용을 위해 추가적인 비용이 발생한다. 이러한 문제를 해결하기 위해 ISO/IEC 13249-8 Metadata Registry Access (MRA)가 개발 중에 있으며, MRA는 상이한 MDR 시스템에 일관된 방법으로 접근할 수 있는 표준 인터페이스이다. 그러나 MRA는 MDR 표준에 정의되어 있는 개념 즉, 클래스 간 관계성을 고려하지 않는다. 이는 부정확한 결과를 생성할 수 있으며, 각 MDR 시스템의 물리적 구조를 고려하여 질의를 모델링하고 재작성하는 추가적인 비용이 발생한다. 이 논문에서는 클래스 간 관계성을 고려한 확장된 인터페이스 eMRA(Extened MRA)를 제안하며, 비교 평가를 통해 확장 인터페이스의 장점을 기술한다. eMRA는 MDR의 개념간 관계성을 정의하여 질의 모델링과 시스템의 참조무결성 측면에서 MRA보다 우수한 성능을 가진다.

특징 변환과 은닉 마코프 모델을 이용한 팔 제스처 인식 시스템의 설계 (Design of an Arm Gesture Recognition System Using Feature Transformation and Hidden Markov Models)

  • 허세경;신예슬;김혜숙;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.723-730
    • /
    • 2013
  • 본 논문에서는 Kinect 센서를 이용한 팔 제스처 인식 시스템의 설계에 대해 소개한다. 제스처 인식을 위한 기존의 연구들에서는 동적 시간 왜곡(DTW)에서 은닉 마코프 모델(HMM)에 이르기까지 다양한 방법들이 적용되어 왔다. 본 논문에서 제안하는 제스처 인식 시스템은 Kinect 센서를 통해 얻을 수 있는 순차적인 팔 관절 위치 데이터로부터 각 제스처 별 고유한 은닉 마코프 모델을 학습한다. 동일한 제스처를 수행하더라도 Kinect 센서에 포착되는 각 관절의 위치 좌표 값들은 팔의 길이와 방향에 따라 크게 달라질 수 있다는 문제점이 있다. 본 논문에서 제안하는 시스템에서는 다양한 환경 조건에서도 높은 제스처 인식 성능을 얻기 위해, 팔 관절들의 좌표 값으로 구성된 특징 벡터를 팔 관절들 간의 각도 값으로 변환하는 특징 변환 과정을 수행한다. 또한, 본 시스템에서는 은닉 마코프 모델의 학습과 적용의 효율성을 높이기 위해, 고차원 실수 관측 벡터들에 k-평균 군집화를 적용하여 이산 은닉 마코프 모델들을 위한 1차원 정수 시퀀스들을 구한다. 이와 같은 차원 축소와 이산화를 통해, 실시간 환경에서도 은닉 마코프 모델들을 효율적으로 제스처 인식에 이용할 수 있다. 끝으로, 서로 다른 두 가지 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안한 시스템의 높은 인식 성능을 입증해 보인다.

깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출 (Real-time Hand Region Detection based on Cascade using Depth Information)

  • 주성일;원선희;최형일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.713-722
    • /
    • 2013
  • 본 논문에서는 깊이정보를 이용하여 케스케이드 방식에 기반한 실시간 손 영역 검출 방법을 제안한다. 실험 환경 조명 조건의 변화로부터 빠르고 안정적으로 손 영역을 검출하기 위해 깊이정보만을 이용한 특징을 제안하며, 부스팅과 케스케이드 방법을 이용한 분류기를 통해 손 영역 검출 방법을 제안한다. 먼저, 깊이정보만을 이용한 특징을 추출하기 위해 입력영상의 중심 깊이 값과 분할된 블록의 평균 깊이 값의 차이를 계산하고, 모든 크기의 손 영역 검출을 위해 중심 깊이 값과 2차 선형 모델을 이용하여 손 영역의 크기를 예측한다. 그리고 손 영역으로부터의 특징 추출을 통한 학습 및 인식을 위해 케스케이드 방식을 적용한다. 본 논문에서 제안한 분류기는 정확도를 유지하고 속도를 향상시키기 위하여 각 스테이지를 한 개의 약분류기로 구성하고 검출율을 만족하면서 오류율이 가장 낮은 임계값을 구하여 과적합 학습을 수행한다. 학습된 분류기를 이용하여 손 영역을 분류하고, 병합단계를 통해 최종 손 영역을 검출한다. 마지막으로 성능 검증을 위해 기존의 다양한 아다부스트와 정량적, 정성적 비교 분석을 통해 제안하는 손 영역 검출 알고리즘의 효율성을 입증한다.

비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘 (Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier)

  • 지상근;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.55-64
    • /
    • 2013
  • 디지털 고성능 영상장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 고품질의 위 변조가 가능하게 되었다. 특히 화폐 위 변조 범죄가 급격히 증가하고 있지만, 일반인이 위 변조 지폐를 발견하는 비율은 낮은 수준이다. 본 논문에서는 범용 스캐너를 이용하여 위 변조 지폐를 판별할 수 있는 알고리즘을 제안한다. 본 알고리즘에서는 위 변조 지폐를 출력하는 과정에서 나타나는 인쇄물의 고유한 특징에 기반하여 위 변조 여부를 판별한다. 비지역적 평균 알고리즘을 이용하여 인쇄 과정에서 나타나는 노이즈 특성을 추출하고, 명암도 동시발생 행렬을 계산하여 지폐의 특징값을 추출하였다. 추출한 지폐의 고유한 특징값을 학습기반 데이터 분류기에 적용하여 위 변조 여부를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위해 총 324장의 1만원권 지폐와 8대 프린터에서 출력한 위조지폐 이미지로 실험하였다. 또한 노이즈 추출에 있어 기존 프린터 판별 기술에서 사용되었던 위너필터와 이산웨이블릿변환 기반 알고리즘과 비교 분석을 수행하였다. 그 결과 제안한 알고리즘이 위 변조 판별에 있어서 94% 이상의 정확도를 보였으며, 위 변조 지폐 인쇄기기 식별에 있어서는 93% 이상의 정확도를 보여서 기존 프린터 판별 기술을 이용한 것보다 우수함을 보였다.