• 제목/요약/키워드: software defined networks (SDN)

검색결과 94건 처리시간 0.021초

Review on Software-Defined Vehicular Networks (SDVN)

  • Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.376-388
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular networks and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software-defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and a number of architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Software-Defined Vehicular Networks (SDVN)

  • Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.231-243
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular net- works and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and several architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software Defined Network(SDN) 환경에서 비인가 소프트웨어 차단 기법 (Unauthorized Software Blocking Techniques in Software Defined Network (SDN) Environments)

  • 강남길;권태욱
    • 정보보호학회논문지
    • /
    • 제29권2호
    • /
    • pp.393-399
    • /
    • 2019
  • 조직으로부터 인가받지 않고 내부로 반입한 비인가SW가 조직의 네트워크 보안에서 위협으로 대두되고 있는 상황에서 SDN(Software-Defined Network) 기반의 네트워크 환경이 구축된 조직에서는 별도의 보안장비를 설치하지 않고도 조직의 특성을 고려한 보안 어플리케이션 개발을 통해 네트워크보안을 강화할 수 있다. 기존 SDN 환경의 보안기술은 방화벽, 침입탐지시스템 등 외부 네트워크로부터 내부 네트워크를 보호하는 연구가 이루어져 왔으나 내부자 위협에 대해서는 부족하였다. 따라서 이러한 SDN 환경에서 조직 내부 위협 중 하나인 비인가SW로 부터 내부 네트워크를 보호할 수 있는 시스템을 제안한다.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

Introducing Network Situation Awareness into Software Defined Wireless Networks

  • Zhao, Xing;Lei, Tao;Lu, Zhaoming;Wen, Xiangming;Jiang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1063-1082
    • /
    • 2018
  • The concept of SDN (Software Defined Networking) endows the network with programmability and significantly improves the flexibility and extensibility of networks. Currently a plenty of research works on introducing SDN into wireless networks. Most of them focus on the innovation of the SDN based architectures but few consider how to realize the global perception of the network through the controller. In order to address this problem, a software defined carrier grade Wi-Fi framework called SWAN, is proposed firstly. Then based on the proposed SWAN architecture, a blueprint of introducing the traditional NSA (Network Situation Awareness) into SWAN is proposed and described in detail. Through perceiving various network data by a decentralized architecture and making comprehension and prediction on the perceived data, the proposed blueprint endows the controllers with the capability to aware of the current network situation and predict the near future situation. Meanwhile, the extensibility of the proposed blueprint makes it a universal solution for software defined wireless networks SDWNs rather than just for one case. Then we further research one typical use case of proposed NSA blueprint: network performance awareness (NPA). The subsequent comparison with other methods and result analysis not only well prove the effectiveness of proposed NPA but further provide a strong proof of the feasibility of proposed NSA blueprint.

SDN-Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra-Dense Small Cell Networks

  • Yang, Guang;Cao, Yewen;Esmailpour, Amir;Wang, Deqiang
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.227-236
    • /
    • 2018
  • Ultra-dense small cell networks (UD-SCNs) have been identified as a promising scheme for next-generation wireless networks capable of meeting the ever-increasing demand for higher transmission rates and better quality of service. However, UD-SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software-defined networking (SDN)-based hierarchical agglomerative clustering (SDN-HAC) framework, which leverages SDN to centrally control all sub-channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non-cooperative scenarios, respectively.

SDN 응용 검증을 위한 프로세스 알지브라 기반 정형 기법 (Process Algebra Based Formal Method for SDN Application Verification)

  • 신명기;이종화;최윤철;이지현;이승익;강미영;곽희환;최진영
    • 한국통신학회논문지
    • /
    • 제39B권6호
    • /
    • pp.387-396
    • /
    • 2014
  • 최근 SDN (Software Defined Networking) 기반의 다양한 네트워크 제어 및 관리 플랫폼들이 서비스제공자 및 통신사업자들에 의해 연구되고 있다. SDN의 중요한 특징 중 하나는 소프트웨어 프로그램으로 작성된 간단한 응용에 의해 네트워크가 쉽게 제어되고 관리된다는 점에 있다. 이러한 관점에서 잘못 작성된 SDN 응용은 네트워크 전체에 오류를 발생시킬 수 있어, 해당 응용은 작성된 오픈플로우 포워딩 규칙(rule)을 SDN 컨트롤러(controller)를 통해 스위치에 반영하기 전에 토폴로지와 네트워크 환경의 안전성(safety)과 일관성(consistency)이 반드시 검증되어야 한다. 본 논문에서는 SDN 응용 검증을 위한 프로세스 알지브라 (process algebra) 기반의 언어인 pACSR (Packet based Algebra of Communicating Shared Resources)와 이를 기반으로 한 정형 검증 프레임워크를 제안하고, 이에 대한 SDN 정형검증 도구 연구시제품 구현 현황을 기술한다.

Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

  • Tang, Wan;Chen, Fan;Chen, Min;Liu, Guo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.1-17
    • /
    • 2016
  • The separated management and operation of commercial IP/optical multilayer networks makes network operators look for a unified control plane (UCP) to reduce their capital and operational expenditure. Software-defined networking (SDN) provides a central control plane with a programmable mechanism, regarded as a promising UCP for future optical networks. The general control and scheduling mechanism in SDN-based optical burst switching (OBS) networks is insufficient so the controller has to process a large number of messages per second, resulting in low network resource utilization. In view of this, this paper presents the burst-flow scheduling mechanism (BFSM) with a proposed scheduling algorithm considering channel usage. The simulation results show that, compared with the general control and scheduling mechanism, BFSM provides higher resource utilization and controller performance for the SDN-based OBS network in terms of burst loss rate, the number of messages to which the controller responds, and the average latency of the controller to process a message.