• Title/Summary/Keyword: software defined networks (SDN)

Search Result 94, Processing Time 0.028 seconds

Review on Software-Defined Vehicular Networks (SDVN)

  • Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.376-388
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular networks and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software-defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and a number of architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Software-Defined Vehicular Networks (SDVN)

  • Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.231-243
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular net- works and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and several architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Unauthorized Software Blocking Techniques in Software Defined Network (SDN) Environments (Software Defined Network(SDN) 환경에서 비인가 소프트웨어 차단 기법)

  • Kang, Nam-Gil;Kwon, TaeWook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.393-399
    • /
    • 2019
  • In a situation where an unauthorized SW brought into the organization without being authorized is emerging as a threat to the network security, the security of the network based on the SDN(Software-Defined Network) can be strengthened through the development of the security application considering the organization's characteristics. Security technology of existing SDN environment has been studied to protect internal network from external networks such as firewalls and Intrusion Detection Systems, but the research for resolving insider threat was insufficient. Therefore, We propose a system that protects the internal network from unauthorized SW, which is one of the insider threats in the SDN environment.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

Introducing Network Situation Awareness into Software Defined Wireless Networks

  • Zhao, Xing;Lei, Tao;Lu, Zhaoming;Wen, Xiangming;Jiang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1063-1082
    • /
    • 2018
  • The concept of SDN (Software Defined Networking) endows the network with programmability and significantly improves the flexibility and extensibility of networks. Currently a plenty of research works on introducing SDN into wireless networks. Most of them focus on the innovation of the SDN based architectures but few consider how to realize the global perception of the network through the controller. In order to address this problem, a software defined carrier grade Wi-Fi framework called SWAN, is proposed firstly. Then based on the proposed SWAN architecture, a blueprint of introducing the traditional NSA (Network Situation Awareness) into SWAN is proposed and described in detail. Through perceiving various network data by a decentralized architecture and making comprehension and prediction on the perceived data, the proposed blueprint endows the controllers with the capability to aware of the current network situation and predict the near future situation. Meanwhile, the extensibility of the proposed blueprint makes it a universal solution for software defined wireless networks SDWNs rather than just for one case. Then we further research one typical use case of proposed NSA blueprint: network performance awareness (NPA). The subsequent comparison with other methods and result analysis not only well prove the effectiveness of proposed NPA but further provide a strong proof of the feasibility of proposed NSA blueprint.

SDN-Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra-Dense Small Cell Networks

  • Yang, Guang;Cao, Yewen;Esmailpour, Amir;Wang, Deqiang
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.227-236
    • /
    • 2018
  • Ultra-dense small cell networks (UD-SCNs) have been identified as a promising scheme for next-generation wireless networks capable of meeting the ever-increasing demand for higher transmission rates and better quality of service. However, UD-SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software-defined networking (SDN)-based hierarchical agglomerative clustering (SDN-HAC) framework, which leverages SDN to centrally control all sub-channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non-cooperative scenarios, respectively.

Process Algebra Based Formal Method for SDN Application Verification (SDN 응용 검증을 위한 프로세스 알지브라 기반 정형 기법)

  • Shin, Myung-Ki;Yi, Jong-Hwa;Choi, Yunchul;Lee, Jihyun;Lee, Seung-Ik;Kang, Miyoung;Kwak, Hee Hwan;Choi, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.6
    • /
    • pp.387-396
    • /
    • 2014
  • Recently, there have been continuous efforts and progresses regarding the research on diverse network control and management platforms for SDN (Software Defined Networking). SDN is defined as a new technology to enable service providers/network operators easily to control and manage their networks by writing a simple application program. In SDN, incomplete or malicious programmable entities could cause break-down of underlying networks shared by heterogeneous devices and stake-holders. In this sense, any misunderstanding or diverse interpretations should be completely avoided. This paper proposes a new framework for SDN application verification and a prototype based on the formal method, especially with process algebra called pACSR which is an extended version of Algebra of Communicating Shared Resources (ACSR).

Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

  • Tang, Wan;Chen, Fan;Chen, Min;Liu, Guo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • The separated management and operation of commercial IP/optical multilayer networks makes network operators look for a unified control plane (UCP) to reduce their capital and operational expenditure. Software-defined networking (SDN) provides a central control plane with a programmable mechanism, regarded as a promising UCP for future optical networks. The general control and scheduling mechanism in SDN-based optical burst switching (OBS) networks is insufficient so the controller has to process a large number of messages per second, resulting in low network resource utilization. In view of this, this paper presents the burst-flow scheduling mechanism (BFSM) with a proposed scheduling algorithm considering channel usage. The simulation results show that, compared with the general control and scheduling mechanism, BFSM provides higher resource utilization and controller performance for the SDN-based OBS network in terms of burst loss rate, the number of messages to which the controller responds, and the average latency of the controller to process a message.