• 제목/요약/키워드: softened truss model

검색결과 28건 처리시간 0.023초

순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석 (Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear)

  • 차영규;김학수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.175-181
    • /
    • 2010
  • 평형트러스모델, Mohr적합트러스모델, 그리고 연성트러스모델은 회전각에 기초하기 때문에 회전각모델이라 불리 운다. 이러한 회전각모델들은 콘크리트기여도를 예측할 수 없는 단점이 있다. 콘크리트 기여 성분을 계산할 수 있는 MCFT(Modified Compression Field Theory)나 RA-STM(Rotating Angle-Softening Truss Model) 같은 최근 트러스모델(Modern Truss Model, MTM)은 균열이 발생한 철근콘크리트요소를 연속체 재료로 취급한다. 또한 MTM은 평형조건과 적합조건 그리고 2축 상태에서 콘크리트의 연성 응력-변형률 관계를 이용하여 비선형해석을 수행하고 있다. 본 연구는 전단응력-변형률의 전체 이력 상태를 모두 계산하지 않고, 철근항복과 스트럿 압괴(crushing failure) 파괴기준을 이용하여 해를 찾는 방법으로 수렴속도를 개선한 것이다. 이 알고리즘을 이용하여 Hsu가 실험한 9개의 전단응력-변형률 자료를 분석하였다.

Effect of tension stiffening on the behaviour of square RC column under torsion

  • Mondal, T. Ghosh;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.501-520
    • /
    • 2015
  • Presence of torsional loadings can significantly affect the flow of internal forces and deformation capacity of reinforced concrete (RC) columns. It increases the possibility of brittle shear failure leading to catastrophic collapse of structural members. This necessitates accurate prediction of the torsional behaviour of RC members for their safe design. However, a review of previously published studies indicates that the torsional behaviour of RC members has not been studied in as much depth as the behaviour under flexure and shear in spite of its frequent occurrence in bridge columns. Very few analytical models are available to predict the response of RC members under torsional loads. Softened truss model (STM) developed in the University of Houston is one of them, which is widely used for this purpose. The present study shows that STM prediction is not sufficiently accurate particularly in the post cracking region when compared to test results. An improved analytical model for RC square columns subjected to torsion with and without axial compression is developed. Since concrete is weak in tension, its contribution to torsional capacity of RC members was neglected in the original STM. The present investigation revealed that, disregard to tensile strength of concrete is the main reason behind the discrepancies in the STM predictions. The existing STM is extended in this paper to include the effect of tension stiffening for better prediction of behaviour of square RC columns under torsion. Three different tension stiffening models comprising a linear, a quadratic and an exponential relationship have been considered in this study. The predictions of these models are validated through comparison with test data on local and global behaviour. It was observed that tension stiffening has significant influence on torsional behaviour of square RC members. The exponential and parabolic tension stiffening models were found to yield the most accurate predictions.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.

콘크리트의 인장강성을 고려한 RC보의 비틀림 해석 (Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete)

  • 박창규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

평균변형률을 이용한 RC보의 비틀림 해석 (Torsional Analysis of RC Beam Using Average Strains)

  • 박창규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Modelling of shear deformation and bond slip in reinforced concrete joints

  • Biddah, Ashraf;Ghobarah, A.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.413-432
    • /
    • 1999
  • A macro-element model is developed to account for shear deformation and bond slip of reinforcement bars in the beam-column joint region of reinforced concrete structures. The joint region is idealized by two springs in series, one representing shear deformation and the other representing bond slip. The softened truss model theory is adopted to establish the shear force-shear deformation relationship and to determine the shear capacity of the joint. A detailed model for the bond slip of the reinforcing bars at the beam-column interface is presented. The proposed macro-element model of the joint is validated using available experimental data on beam-column connections representing exterior joints in ductile and nonductile frames.

Effect of loading rate on softening behavior of low-rise structural walls

  • Mo, Y.L.;Rothert, H.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.729-741
    • /
    • 1997
  • Cracked reinforced concrete in compression has been observed to exhibit lower strength and stiffness than uniaxially compressed concrete. The so-called compression softening effect responsible is thought to be related to the degree of transverse cracking and straining present. It significantly affects the strength, ductility and load-deformation response of a concrete element. A number of experimental investigations have been undertaken to determine the degree of softening that occurs, and the factors that affect it. At the same time, a number of diverse analytical models have been proposed by various this behavior. In this paper, the softened truss model thoery for low-rise structural shearwalls is employed using the principle of the stress and strain transformations. Using this theory the softening parameters for the concrete struts proposed by Hsu and Belarbi as well as by Vecchio and Collins are examined by 51 test shearwalls available in literature. It is found that the experimental shear strengths and ductilities of the walls under static loads are, in average, very close to the theoretical values; however, the experiment shear strengths and ductilities of the walls under dynamic loads with a low (0.2 Hz) frequency are generally less than the theoretical values.

전단보강철근이 없는 RC보의 수직변형률 평가를 통한 전단강도 산정 (Shear Strength Prediction of RC Beams without Stirrup using Transverse Strain Evaluation)

  • 신근옥;이창신;정제평;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.275-278
    • /
    • 2005
  • This paper presents a model for evaluating the contribution by arch action and frame action to shear resistance in shear-critical reinforced concrete beams without stirrup. The rotating angle softened truss model is employed to calculate the shear deformation of the web and the relative axial displacement of the compression and tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. The transverse strain obtained from the proposed model is selected for shear failure criterion. Using the failure criterion, shear strength of RC slender beams without stirrup is predicted.

  • PDF

철근콘크리트 부재의 핀칭 메커니즘에 대한 연구 (Pinching Mechanism of Reinforced Concrete Elements)

  • 김지현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

철근의 배근위치가 다른 철근콘크리트 부재의 거동 분석 (Behavior of Reinforced Concrete Members Having Different Steel Arrangements)

  • 김지현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.333-336
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" and ductility in the post-yield hysteretic loops. In this paper, four RC elements are considered to study the effect of the steel grid orientation on "pinching effect" and ductility. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops are studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF