• Title/Summary/Keyword: soft-start

Search Result 92, Processing Time 0.023 seconds

Sensorless Fuzzy Logic Soft Start of Induction Motor With Load Detection

  • Arehpanahi, Mehdi;Monfared, Jafar Mili;Abbaszadeh, Karim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2378-2381
    • /
    • 2003
  • In recent years, fuzzy logic has received greater emphasis in the field of power electronics and motion control by virtue of its adaptive capability. A new fuzzy logic based soft-start scheme for induction motor drives close to load detection has been discussed here using microcontroller based thyristorised voltage controller. Rule based soft-start algorithm is fully realised through a software approach only. The soft-start strategy is based on the change of input impedance during starting period. The prototype has been tested under various loading conditions and found to be reliable.

  • PDF

Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle (점호각을 고려한 유도전동기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

Soft Start-up Characteristics Analysis of Squirrel Cage Induction Generator (농형 유도 발전기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.103-107
    • /
    • 2016
  • In general, the voltage stability of induction generator is lower than synchronous generator. Induction generator has a number of advantages over the synchronous generator on the side of price and maintenance. So Induction generator has been applied to the small hydroelectric power of low output. Induction generator usually generates a high current during grid connection. The high current that occurs during grid connection can cause a voltage drop in the system. In order to increase the supply of the induction generator, it is necessary to propose a method of reducing high current. This paper proposes some method of the soft start to reduce voltage drop caused by the large starting current. soft-start method has high voltage drop effect than direct start method, control of firing angle can be increased the voltage drop effect.

MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화)

  • Han, Seung-Ryul;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

Novel Soft Starting Algorithm of Single Phase Induction Motors by Using PWM Inverter

  • Kim, Hae-Jin;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1720-1728
    • /
    • 2018
  • This paper proposes a novel soft starting algorithm by using PWM inverter technique to control an amplitude of the motor starting current at a single-phase induction motor (SPIM). Traditional SPIM starting methods such as a Split-Phase, Capacitor-Start, Permanent-Split Capacitor (PSC), Capacitor-Start Capacitor-Run (CSCR), basically cannot control the magnitude of starting current due to the fixed system structures. Therefore, in this paper, a soft starting algorithm based on a proportional resonant (PR) control with a variable and constant frequency is proposed to reduce the inrush current and starting up time. In addition, a transition algorithm for operation modes is devised to generate a constant voltage and constant frequency (CVCF). The validity and effectiveness of the proposed soft starting method and transition algorithm are verified through experimental results.

EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN (완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과)

  • Wee, You-Min;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.332-343
    • /
    • 2005
  • The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at $400\;mw/cm^2$, plasma arc light curing for 6 seconds at $1300\;mW/cm^2$ and LED light curing for 10 seconds at $7The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at . For the soft-start curing method ; 2 seconds light exposure at $650\;mW/cm^2$ followed by 3 seconds at $1300\;mW/cm^2$ and exponential increase with 5 seconds followed by 10 seconds at $700\;mW/cm^2$ were used. Contraction stress was measured using strain gauge method and Vickers hardness was measured 24 hours after polymerization at the top and bottom of specimens. Resin-acrylic interfaces were observed using a scanning electron microscope(SEM). The results of present study can be summarized as follows: 1. Contraction stresses at 10 min after polymerization were significantly reduced with the soft-start curing both in plasma and LED light sources(P<0.05). 2. Plasma light curing with soft-start resulted in not only the lowest contraction stress, but also the lowest hardness(P<0.05) 3. LED light curing with soft-start showed lower contraction stress than the one-step continuous halogen and LED light curing(P<0.05). 4. Microhardness of specimens cured by LED light with soft-start was equivalent to that of cured by the one-step continuous halogen and LED light(P>0.05). 5. Curing by LED light with soft-start and conventional halogen light resulted in better marginal sealing than plasma light and one-step LED light curing.

  • PDF

Automobile Power Seat Using Motor Current Profile Control Technology (모터 전류 형상 제어 기술을 적용한 차량용 전동 시트)

  • Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.224-229
    • /
    • 2019
  • Seat of automobile is required to support the comfort to driver and passenger during the driving. The control method of the seat position is changed from manual type to power type, which means using the motor to increase the comfort of the driver. By using the motor, several problems, such as vibration, noise, and over-current, appeared. These problems can be reduced through the control of seat motor. In this study, a control technology of four control variables, which determine profile of the input voltage applying to the seat motor, is proposed to generate the current profile having soft-start and soft-stop. The current flowing through the coil by input voltage is described by mathematical modeling of power seat. It is confirmed that optimized current profile having soft-start and soft-stop can be generated from simulation using the mathematical model.

Soft-Start Open Circuit Voltage and Constant Current Sequence Control of 2.5[kW] HID Search Lamp for Ship (선박용 2.5[kW] HID 탐사등의 Soft-Start 방식에 의한 개방회로 전압과 점등전류 순차 제어)

  • Park, Noh-Sik;Kwon, Soon-Jae;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.45-51
    • /
    • 2008
  • HID(High Intensity Discharge) search lamp for shipment requires a high open circuit and output current compare than vehicle. This paper presents a soft-start open circuit voltage and constant current sequence control method for 2.5[kW] HID search lamp. The proposed method controls the opal circuit voltage and discharge current of HID lamp according to ignition signal with a simple 8-bit micro-processor and PWM device. For the stable control of lamp, micro-processor checks the output voltage and current. And the checked signals are compared with ignition signal and changes the control mode for stable operation. An ignition signal and micro-processor change the control mode from open circuit voltage contort to constant current control. The proposed control scheme is verified from experimental tests of 2.5[kW] HID search lamp for shipment.

Soft Start System of Induction Motor using Emergency Generator (비상 발전기를 이용한 유도전동기의 소프트 기동 시스템)

  • Hwangbo, Chan;Ko, Jae-Ha;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

A Novel Hybrid Sequential Start Control System for Large Inductive Loads

  • Kim, Sang-Kon;Kim, Tae-Kon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.388-394
    • /
    • 2015
  • The inrush current of a large inductive load can be reduced with a soft starter; however, the large inrush current caused by simultaneous bulk starts (SBSs) cannot be effectively reduced. In order to reduce the high inrush current and voltage sag owing to the SBSs of large capacity inductive loads within a power network, a novel hybrid sequential start control system is proposed, implemented on embedded systems, and evaluated with a testbed in this study. From the experimental and simulation results of the proposed control system, the inrush current could be effectively restricted below the maximum current capacity of a power distributing board. Moreover, with the proposed system, power cost typically dictated by the peak power consumption can be fairly reduced, and the quality of the power system connected to the inductive loads can be efficiently increased.