• Title/Summary/Keyword: soft soils

Search Result 321, Processing Time 0.03 seconds

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

Clay Minerals and Their Distribution in the Soft Ground Deposited along the Coastline (한국 해안에 퇴적된 연약지반의 점토광물의 종류와 분포)

  • 김상규;임희대;문성권
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.73-80
    • /
    • 1998
  • In order to identify clay minerals in the soft ground, which has been deposited along the coastline of the Korean peninsula, 14 samples have been taken at different locations and then X-ray diffraction analysis is carried out for them. It is known from the analysis that the various kinds of clay minerals mixed with different portions exist in the soft ground, but halloysite is not traced in any samples. It is featured regionally that kaolinite and illite are found in the western coast and the southern coast. Montmorillonites exists only in the western coast. This feature of regional occurrences can be explained with the help of geology of the region. Activities determined from physical properties of the soils do not coincide with those of clay minerals identified from X-ray diffraction analysis.

  • PDF

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

Improvement Effects of Soft Clay Soils Using Quick Lime Piles (생석회 말뚝을 이용한 연약점토지반의 개량효과)

  • Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.45-51
    • /
    • 2010
  • This study is to evaluate an application of technology to the soft ground stability using quick lime pile in the field. We investigated properties of Korean quick lime by conducting loading test and theoretical consideration about a principle and property of soft ground improvement by quicklime. According to the test results, it was estimated that quick lime pile method has dehydration effect by absorption of quick lime, consolidation effect by swelling of pile, increasing bearing by strength of pile itself and decreasing sinking effect, etc. A material property of quick lime is favorable for construction and considerable strength. In the case of higher strength is required, using cement as additive would increase material strength.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

A Study on the Lateral Flow in Polluted Soft Soils (오염된 연약지반의 측방유동에 관한 연구)

  • 안종필;박상범
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.175-190
    • /
    • 2001
  • This study investigates the existing theoretical backgrounds in order to examine the behavior of lateral flow according to the plasticity of soils when unsymmetrical surcharge is worked on polluted soft soils by comparing and analyzing the results measured through model tests. Model tests are canied out as follows soil tank, bearing frame and bearing plate are made. By increasing unsymmetrical surcharge to the ground soils with the consistent water content and with gradually increased polluted materials at intervals, the amounts of settlement, lateral displacement and upheaval were respectively observed. In conclusion, the value of critical surcharge was expressed as q$_{cr}$=2.78$_{cu}$ which was similar to those Tschebotarioff(q$_{cr}$=3.0$_{cu}$) and Meyerhof(q$_{cr}$=(B/2H+$\pi$/2)$_{cu}$) had been proposed. The value of ultimate capacity was expressed as q$_{ult}$=4.84$_{cu}$ which was similar to that of Prandtl. The lateral flow pressure is adeQuately calculated by the eQuation(P$_{max}$=K$_o$ r H) and the maximum value of lateral flow pressure is found near O.3H of layer thickness(H) and is higher to ground surface than the ones in composition pattern, Poulos distribution pattern and softclay soils (CL, CH) which is not polluted. The stability control method used in this research followed the management diagram of Tominaga.Hashimoto, Shibata.Sekiguchi, Matsuo.Kawamura who use the amounts of plasticity displacement by lateral flow. As a result, the ultimate capacity values in the diagram {S$_v$-(Y$_m$/S$_v$)} of Matsuo.Kawamura and in the diagram {(q/Y$_m$)-q} of Shibata. Sekiguchi were smaller than in the ones of load-settlement curve (q-S$_v$).

  • PDF

Investigation of Proper Replacement Depth for the Reinforced Earth Wall on a Soft Ground by Finite Element Analysis (유한요소해석에 의한 연약지반 상 보강토 옹벽에 대한 적정 치환깊이 검토)

  • Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.153-162
    • /
    • 2007
  • For the reinforced earth wall constructed on a soft ground in parallel with replacing soft soils, the behavior of the wall according to variations of thickness and stiffness of soft layer, replacement depth, and wall height is investigated using a finite element method, in which incremental construction steps including consolidation of soft soil layer are considered. The behavior of wall is characterized by investigating displacements and settlements developing at the wall, and shear strains developing in a soil deposit. The stability of wall is, then, evaluated by comparing these values with the safety criteria determined on the basis of the literature. Based on the investigation, it is shown that the behavior of wall is influenced naturally from soft soil thickness(t), replacement depth(d) and wall height(h), but more significantly from d and h. In addition, it is also shown that the normalized replacement depth, d/h, required for the safety of wall is not influenced significantly by the variations of t and h. Consequently, it can be concluded that the proper replacement depth can be suggested in an equivalent value in terms of d/h, even for the cases where the wall height is varying with stations, but the variation is not significant.

Low Molecular Weight Organic Acids in Brassica pekinensis Rupr. and Growing soil Influenced by Simulated Nitrate Deposition

  • Xie, Wen-Ming;Liu, Xing-Quan;Ko, Kwang-Yong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We investigated whether carboxylate exudation of Brassica pekinensis Rupr. was affected by nitrate deposition from simulated acid rain. A gas chromatographic (GC) analysis was employed for the determination of low molecular weight organic acids (LOA) in rhizosphere soils, bulk soil, roots and leaves of Brassica pekinensis Rupr.. Rhizosphere soils were collected after 8 weeks of plant growth by first removing the bulk soil from the root system and then by mechanical move off the rhizosphere soil that adhered to the root surface with soft brush. Soil and plant materials were simultaneously extracted with the mixture of methanol and sulfuric acid (100:7, v/v). Seven organic acids, oxalic, malonic, fumaric, succinic, maleic, L-malic and citric acid were identified and quantified by GC equipped with FID. Oxalic, L-malic, and citric acids were found in both the bulk and rhizosphere soils, while most LOAs were not detected in the control treatment. On the contrary, except maleic acid, all other organic acids were detected in the leaves and roots of cabbages treated with nitrate deposition.