• Title/Summary/Keyword: sodium salts

Search Result 267, Processing Time 0.03 seconds

Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions (담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.

Effect of Combined Use of Sun-dried Salt and Monosodium Glutamate on Sodium Concentration in Vegetable Rice Porridge and Bean-sprout Soup (채소죽과 콩나물국의 천일염과 MSG 사용에 따른 나트륨 함량 변화)

  • Sung, Dongeun;Park, Jae Young;Han, Jiseok;Park, Yooyoung;Cho, Mi Sook;Oh, Sangsuk
    • Journal of the Korean Society of Food Culture
    • /
    • v.32 no.1
    • /
    • pp.52-57
    • /
    • 2017
  • The feasibility of reduction of sodium intake using sun-dried salt and monosodium glutamate (MSG) was studied. Preference test was performed to evaluate the sensory properties of bean-sprout soup and vegetable rice porridge soup. Sun-dried salt and MSG might be a partial substitute for refined salt. There was a significant difference in salt taste strength between sun-dried salt and refined salt. Sun-dried salts 0.45% with MSG 0.07% resulted in the highest taste preference compared to that of sun-dried salts 0.60% without MSG in bean-sprout soup, which resulted in 23.9% reduction of sodium intake. Sun-dried salts 0.38% with MSG 0.04% resulted in the highest taste preference compared to sun-dried salts 0.53% without MSG in vegetable rice porridge soup, which resulted in 25.4% reduction of sodium intake. There seemed to be a synergistic effect on reduced usage of sodium salt when MSG was used in vegetable rice porridge and bean-sprout soup with sun-dried salt.

Surprisingly, traditional purple bamboo salt, unlike other salts does not induce hypertension in rats

  • Kim, Young-Sick;Lee, Eun-Hee;Kim, Hyung-Min
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.16.1-16.5
    • /
    • 2013
  • Hypertension induces many of the social costs related by cardiovascular diseases. Sodium is known as a crucial factor in inducing type I hypertension. In traditional Korean medicine, bamboo salt (BS) has been used in the attenuation of salts toxic coldness and nowadays it has shown various therapeutic effects. It contains mostly sodium chloride (about 91.7% of BS); however, the effect of BS on hypertension is still not completely understood. Thus, we investigated the effect of BS on blood pressure for the first time. Two group of BS, sun-dried salt (SDS), NaCl, or distilled water (DW, vehicle control) was administrated orally for 8 weeks. Although BS had no effect on body weight and food intake, it increased water intake (p < 0.05). The BS groups, in terms of blood pressure, was similar to the DW group; whereas the SDS and NaCl groups showed significantly increased blood pressure levels (p < 0.05). BS also decreased sodium-chloride cotransporter (NCC) mRNA expression, unlike SDS or NaCl. These observations indicate that BS may be a promising strategy for the prevention of various diseases including salt-related diseases.

Effect of Neutral Salts on the Reactive Dyeing of Silk (II) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (II) - 음이온의 영향 -)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation towered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions'inhibition power from cation's lowering: the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^->Cl^-> Br^-I^-$. The activation energy(E$_{a}$) lot the dyeing was in the order of $F^->Cl^-> Br^-I^-$ but the dye-uptake on the fabric and the activation free energy$(\Delta{G}^*)$, the real energy barrier fort the reaction, were in the order of $F^->Cl^-> Br^-I^-$ because the strength of the interaction of the anions with sodium cations was the salute as the order of the latter. In other words F$^{[-1000]}$ exerted the weakest electrostatic force on $Na^+$ and competed with the dyestuff anions least of all. The decrease in $\Delta{S}^*$ may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Brёnsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.g.

  • PDF

Effect of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrate from by-Product Gypsum of Phosphoric Acid Process under Water Vapor at Atmospheric Pressure (상압 수증기중에서 인산 석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 1988
  • The catalytic effect of salts on formation of ${\alpha}$-calcium sulfate hemihydrate under water vapor at atmospheric pressure was studied and the formation of q-calcium sulfate hemilydrate from by-product gypsum of phosphoric acid process was investigated. The order of catalytic effect of salts are as follow: Ammonium chloride>Sodium succinate>Calcium chloride>Sodium tartrate>Magnesium chloride The prismatic crystals was formed when ammonium chloride, calcium chloride and magnesium chloride was added, whereas the needle crystals was formed when sodium tartrate was added. Ammonium chlorideis most successful in catalytic effects in formation of ${\alpha}$-calcium sulfate hermihydrate for the by-product gypsum of phosphoric acid process.

  • PDF

Polymer-Coated Liposomes for Oral Drug Delivery (I): Stability of Polysaccharide-Coated Liposomes Against Bile Salts (고분자 코팅을 이용한 경구용 리포좀의 개발(I): 다당체로 코팅된 리포좀의 담즙산염에 대한 안정성)

  • Choi, Young-Wook;Hahn, Yang-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 1992
  • Stabilization of liposomes against degradation by bile salts has been investigated in order to develop a liposomal model system for oral drug delivery. Two polysaccharides, amylopectin (AP) and chitin (CT), were employed to coat both empty liposomes and bromthymol blue (BTB)-encapsulated liposomes by adsorption-coating techniques. Turbidity changes and BTB-release characteristics in pH 5.6 buffer solutions with or without bile salts, sodium cholate and sodium glycocholate, were observed to compare the differences between uncoated liposomes and polysaccharide-coated liposomes. Initial turbidities of both uncoated and polysaccharide-coated liposomes in buffer solution were kept constant within 3% range during 4 hours of experiments. But they were decreased in a different manner in bile salts-containing buffer solutions, showing 10% or less decrease for polysaccharide-coated liposomes and 25% or more decrease for uncoated liposomes. BTB release from uncoated liposomes has been greatly increased upto 90% after 4 hours in bile salts-containing buffer solution, which is a clue for breakdown of liposomal vesicles. However, polysaccharide-coated liposomes showed the controlled-release pattern which is proportional to square-root of time, followed by around 50% release for the same time period. Consequently, it is possible to conclude that these polysaccharide-coated liposomes might be an available system for oral delivery of a drug which is unstable in gut environment.

  • PDF

Addition of Salts and Their Mixtures for Improvement of Storage Stability of Kimchi (김치의 저장성 향상을 위한 염혼합물의 첨가)

  • Kim, Woo-Jung;Kang, Kun-Og;Kyung, Kyu-Hang;Shin, Jae-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.188-191
    • /
    • 1991
  • A study was carried out to investigate the control effect of sodium and potassium phosphates, sodium citrate and three different salts mixtures on kimchi fermentation when they were added into half-fermented kimchi in the concentration range of $0.001{\sim}0.01\;M$. The salts mixtures added were sodium phosphates mixture(CA-A), addition of $NaNO_2$, Ca-EDTA and BHA to CA-A(CA-B) and substitution of BHA with sodium citrate in CA-B. The results showed that sodium phosphates and sodium citrate significantly inhibited the kimchi fermentation while potassium phosphate had little effect. The order of control effect was $Na_3PO_4-Na_2HPO_4-sodium\;citrate-NaH_2PO_4-K_2HPO_4-KH_2PO_4$. Among the salts mixtures, CA-A showed the most reducing effect in the fermentation rate followed by CA-C and CA-A. The mixture of CA-C could extend the time of holding pH $4.2{\sim}4.4$ by approximately 6 times at $4{\sim}25^{\circ}C$ when it was compared to control. The microbial growth study of total and Leuconostoc mesenteroides also showed a very significant decrease in their numbers.

  • PDF

Carcass and body organ characteristics of broilers supplemented with dietary sodium and sodium salts under a phase feeding system

  • Mushtaq, Mirza Muhammad Haroon;Parvin, Rana;Kim, Jihyuk
    • Journal of Animal Science and Technology
    • /
    • v.56 no.1
    • /
    • pp.4.1-4.7
    • /
    • 2014
  • The effect of sodium and sodium salts on carcass and body organ characteristics of broilers under a four phase feeding program were investigated. A basal diet (0.08% dNa with NaCl) was formulated and one of two sources of dNa ($NaHCO_3$ and $Na_2SO_4$) were supplemented to obtain four different percentages of dNa (0.17, 0.26, 0.35, and 0.44%) for each treatment. There was a linear decrease in dressing percentage (DP) with source ${\times}$ level interaction ($p{\leq}0.001$), while there was a linear increase in breast yield and thigh yield with increasing dNa supplementation ($p{\leq}0.001$). Chicks fed 0.35% $NaHCO_3$ and 0.44% dNa $Na_2SO_4$ supplemental salts had lower abdominal fat ($p{\leq}0.04$). Chicks that received increasing levels of dNa (from 0.17 to 0.44%) showed increasing gizzard weight ($p{\leq}0.02$) and decreasing spleen weight ($p{\leq}0.02$). When both salts were supplemented at 0.26% dNa, the chicks showed their lowest bursa weight ($p{\leq}0.001$). Consequently, chicks at higher dNa showed an increase in breast and thigh meat yield, and increasing capacity of their digestive organ. The higher levels of dNa should be tested with other cations and anions to fully understand acid base homoeostasis.

Effect of Fatty Acid Salts on Proteolysis of Insulin in the Nasal Tissue Homogenates of Rabbits (흡수촉진제인 지방산염이 토끼의 비강점막 균질액에서 인슐린 분해에 미치는 영향)

  • Han, Kun;Cha, Cheol-Hee;Chung, Youn-Bok;Park, Cheong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.97-104
    • /
    • 1992
  • The purpose of this study was (i) to determine whether protease inhibition by medium chain fatty acids such as sodium caprate, sodium caprylate and sodium laurate led to suppression of insulin proteolysis over a range of insulin concentrations and (ii) elucidate preventing effect of the enhancers on molecular self-association of insulin in pH 7.4 phosphate buffer isotonic solution. To this end, the rate of insulin proteolysis in nasal tissue supernatants of the albino rabbits was determined in the presence of $0.1{\sim}2%$ sodium caprylate, sodium caprate and sodium laurate at insulin concentrations ranging from $5\;to\;100\;{\mu}M$. At fatty acid salts concentration lower than 0.5%, insulin proteolysis was accelerated but the enhancers of high concentration (>1%) reduced the rate of insulin proteolysis. These effects were dependent upon insulin concentration and chain length of fatty acid salts. Circular dichroism spectra of insulin solutions were then determined. Monomer fraction of insulin was increased with increasing sodium caprate. Therefore, half-life decrease of insulin at low concentrations of the enhancers was attributed to deaggregation of insulin by the enhancers, increasing the proportion of monomers available for nasal proteolysis. And the increase of half-life at high concentration of the enhancers was attributed to inhibitory effect on protease rather than the effect of monomer fraction.

  • PDF

The Effects of Sulfite Salts on the Shelf-life of Low-salted Myungranjeot (Soused Roe of Alaska Pollack) (Sulfite 염에 의한 저염 명란젓의 보존 효과)

  • Kim, Sang-Moo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.940-946
    • /
    • 1996
  • One of the biggest Problems in making jeotkal is the reduction of its shelf-life when lowering the salt content from 20-30% to below 10%. Therefore, in order to extend the shelf-life of the low-salted jeotkal, prior to setting the minimum allowance value of sulfiting agents as food additives for fermented fish products, the preservative effects of sulfite salts on the low-salted myungranjeot (soused roe of Alaska pollack) were studied through various chemical and microbial analyses. The pHs of the low-salted Myungranjeot treated with bisulfite and metasulfite salts rapidly decreased in the biginning of fermentation, while the lactic acid contents increased constantly. Sodium bisulfite and metasulfite enhanced the production of $NH_2-N$ after 10 day-fermentation, whereas they inhibited the production of VBN, TMA and TBA, and the growth of microorganisms including fungi during fermentation. The estimated shelf-lives of low-salted myungranjeot treated with control, sodium sulfate, sodium bisulfite, and sodium metasulfite on the basis of VBN 50 mg% were about 16, 14, 20 and 24 days, respectively.

  • PDF