• Title/Summary/Keyword: sodium caseinate

Search Result 47, Processing Time 0.025 seconds

Rheological Properties of Pork Myofibrillar Protein and Sodium Caseinate Mixture as Affected by Transglutaminase with Various Incubation Temperatures and Times (Transglutaminase를 첨가한 돈육 근원섬유단백질과 카제인염 혼합물의 배양온도와 시간에 따른 물성변화)

  • Hwang, Ji-Suk;Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.154-159
    • /
    • 2008
  • To investigate the rheological properties of protein mixed gels mediated by microbial transglutaminase (MTGase), pork myofibrillar protein (MFP), sodium caseinate (SC) and their mixture (MS), the various gels were incubated at different temperatures for various times. Extracted MFP, SC and their mixture (MS, 1:1) were incubated at different temperatures ($4^{\circ}C$ vs $37^{\circ}C$) for various times (0, 0.5, 2, 4 hr), and assessed for viscosity, gel strength and other characteristics using differential scanning calorimeter (DSC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). DSC measurements showed that incubation at $37^{\circ}C$ rather than $4^{\circ}C$ caused marked changes in thermal transition, and MS displayed similar thermal curves (three endothermic transitions) to MFP and SC alone. After incubation at $37^{\circ}C$ for 2 hrs, the viscosity (cP) of MS increased (p<0.05) due to induction by MTGase, whereas no differences were observed at $4^{\circ}C$. However, gel strength values were no different, regardless of incubation temperatures and times. Future research will address how longer incubation times affect the functionality of protein mixed gels mediated by MTGase.

The Change of Rheological Properties of Nutritional Beverage Base by the Soy Protein Isolate (분리대두단백의 첨가에 따른 영양음료 Base의 Rheology 특성 변화)

  • Shin, Je-Ho;Seo, Jong-Kyo;Lee, Seok-Ki;Sim, Jae-Hun;Kim, Sang-Kyo;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.638-643
    • /
    • 1999
  • In this study we prepared 5 types of nutritional beverage base samples containing various ratios of soy protein isolate (SPI) and sodium caseinate as protein source. The rheological properties of each sample were measured and the results were as followes; Samples changed their rheological properties with the ratio of SPI. Samples represented newtonian property with low ratio of SPI, pseudoplastic property with the increment of SPI, and bingham pseudoplastic property with higher increment of SPI (80% as protein source). In this result we conjectured that the more was the SPI, the more was the formation of progel during heat treatment, which could be the reason of the rheological changes. In the test of the relationship between temperature and apparent viscosity, apparent viscosity of samples decreased along with the increment of temperature. In observing the relationship between time and apparent viscosity, we found sample, containing high ratio of SPI (80%), represented thixotropic property clearly with the hysteresis loop.

  • PDF

Effect of Transglutaminase, Acorn, and Mungbean Powder on Quality Characteristics of Low-fat/salt Pork Model Sausages (Transglutaminase와 도토리 및 녹두 가루 첨가가 저지방/저염 돈육 모델소시지의 품질에 미치는 영향)

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Low-fat pork sausages (LFPS) were prepared with 1% transglutaminase (TG) and 0.5% sodium caseinate (SC), and with or without different type of hydrocolloids (0.3%; acorn, AC or mungbean, MB) to evaluate the effects of these ingredients on the physicochemical and textural properties of LFPS with reduced salt. pH, moisture content (%) and lightness of low-fat/salt pork sausages (LFSPS) were affected by the addition of TG combined with SC (TG-SC) and acorn or mungbean powders affected the lightness and yellowness of LFSPS. However, cooking yield of LFSPS decreased, while textural properties were increased with the addition of TG-SC combination, which did not affect expressible moisture contents (%) of LFSPS. Both AC and MB tended to improve the cooking yield and water holding capacity of LFSPS, especially, MB rather than AC. However, these had no effect on the textural properties of LFSPS, except for textural chewiness. These results indicated that AC and MB powders could be used as a water binding agent in TG-SC combination of LFSPS.

Preparation and Characterization of Sodium Caseinate Coated Papers with Bentonite (벤토나이트를 첨가한 카제인나트륨 기반 코팅지 제조 및 특성 연구)

  • Jihyeon Hwang;Jeonghyeon Lee;Jeyoung Jung;Jin Kie Shim;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • This study reports on the preparation of sodium caseinate-cardanol (CasNa/CL)-based papers coated with different amounts of bentonite (BN) for use as a sustainable packaging material. Their chemical and morphological structures, mechanical properties, water vapor permeability, surface properties, and antioxidant activity of coated papers was assessed as a function of the BN content. The drying of the CasNa/CL coated papers led to the formation of pinholes on their surfaces owing to the presence of trapped water resulting from the difference in the drying rate between the external surface and the inside of the coated layers. Increasing the BN content reduced the pinholes on surface of CasNa/CL/BN coated papers and highly decreased the water vapor transmittance rate of the papers from 387.3±1.9 g/m2·day to 269.25±4.5 g/m2·day. Free radical scavenging assays indicated the addition of CL to the CasNa exhibited the antioxidant activity and antioxidant activity of CasNa/CL/BN did not changed as increase of BN contents. The improved water vapor barrier property and antioxidant activity of CasNa/CL/BN coated papers can be promised for various packaging applications.

Effect of Transglutaminase Addition on the Physicochemical Properties of Sodium Caseinate and Whey Proteins

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • In this study, several factors were analyzed in an effort to determine the effects of transglutaminase (TGase) treatment on sodium caseinate (NaCN), ${\alpha}--lactalbumin$ (${\alpha}-La$), and ${\beta}-lactoglobulin$ (${\beta}-Lg$) polymerization reactions. The results of SDSPAGE showed that NaCN was slightly hydrolyzed to molecular weights of 50-400 kDa according to activation time. ${\alpha}-La$ formed high-molecular polymers of 30-300 kDa, whereas ${\beta}-Lg$ remained almost completely unhydrolyzed. Melting temperatures of NaCN, ${\alpha}-La$ with and without TGase were all in the range of $100{\pm}10^{\circ}C$ under the endothermic curve, and the melting temperature of ${\beta}-Lg$ with TGase was lower than that with TGase. When the proteins were incubated for 3 h with TGase, the micrographic structures showed a small quantity of sediment and broad layers. The final ${\alpha}-La$ residues remained at a level of 21.38%, and the TGase-treated ${\alpha}-La$ was confirmed to have undergone a profound loss of mass, to 18.25%. The DPPH-radical scavenging activity of NaCN and ${\beta}-Lg$ with TGase treatment was higher than that observed in the untreated sample, while those of ${\alpha}-La$ increased with concentration.

The Effects of the Pre-treatments with Proteins on Dyeing of Silk Fabric with Caesalpinia sappan (견직물의 소목염색에서 단백질 전처리 효과)

  • Hwang, So Hee;Jang, Jeong Dae
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.208-218
    • /
    • 2016
  • This study investigated the effects of the working mechanisms of proteins, mordants, and dyes, as well as the mordanting order, on dye uptake by silk fabric pre-treated with proteins and dyed with freeze-dried sappan wood water extract. Soybean protein and sodium caseinate were used as the proteins. 1. When Al mordants were not used, the dyeability of the fabrics increased upon protein pre-treatment as compared to the case without treatment. 2. Dyeing with protein pre-treatment, followed by mordanting, led to the highest dye uptake, and the optimal protein concentration was 5%. 3. The K/S values slightly decreased with an increase in the dyeing temperature, and the fabric turned dark red in color when dyeing was carried out at increasing temperature. Fabrics showed the highest dye uptake at $40^{\circ}C$. 4. Regarding the effect of time, the K/S values of the fabrics with and without protein treatment showed almost no increase after the initial dyeing time of 10min; further, there was hardly any difference in the cases with and without protein pre-treatment. 5. In case of protein pre-treatment fabrics, the washing fastness was level 2. The dry cleaning fastness showed very excellent result with level 4-5. The rubbing fastness was better in dry rubbing than in wet rubbing of the fabrics. For the light fastness, all dyed fabrics showed low fastness.

Electrophoretical Properties of Transglutaminase Treated Milk Product Powders (Transglutaminase를 처리한 분말 유제품의 전기영동적 특성)

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.304-308
    • /
    • 2006
  • This study was performed to understand the behavior of protein mobility and intensity of enzymatic hydrolysis according to crosslinking of sodium caseinate, whey protein isolate, skim milk and whole milk powders with or without transglutaminase (TGase, w/w = 200 : 1) at $38^{\circ}C$. Whey protein was limited to crosslinking and skim milk was relatively more increased in high molecular polymer than whole milk. The degree of crosslinking decreased in the order of sodium caseinate>skim milk>whole milk>whey protein isolate. The SDS-PAGE results indicated that main bands of TGase treated samples had a high mobility and formed bands of molecular weights below 15 kDa by hydrolysis with pepsin after 10 min of reaction time. However, ${\beta}-lactoglobulin$ showed remarkable stability against pepsin hydrolysis treated with and without TGase. The high molecular polymers were easily hydrolyzed with digestive enzymes in vitro experiment. These results suggested that novel dairy products using TGase would have no special digestive problem in human body.

Effects of porcine blood plasma on the emulsion stability, physicochemical characteristics and textural attributes of emulsified pork batter

  • Jin, Sangkeun;Choi, Jungseok
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.170-179
    • /
    • 2021
  • This study was conducted to determine the effects of addition of porcine blood plasma (PBP) to the emulsified pork batter as a substitute for the soy protein isolate (SPI) or sodium caseinate (SC) on the emulsion stability and physicochemical and textural properties of the emulsified pork batter. A total of 10 treatments were no addition and 0.5%, 1.0%, and 1.5% addition with each of SPI, SC, and PBP. The moisture and fat losses of the pork emulsion after cooking decreased with increasing percentage of any of SPI, SC, and PBP (p < 0.05). Further, moisture loss was less for the PBP treatment than for SPI and SC (p < 0.05). The lightness, redness, and whiteness of the emulsified pork batter decreased (p < 0.05) due to any of the SPI, SC, and PBP treatments whereas the yellowness and the chroma and hue values increased. The lightness, redness, yellowness, and chroma and hue values differed also among the SPI, SC, and PBP treatments (p < 0.05); however, the numerical difference between any two types of substitutes was less than 8% of the two corresponding means in all of these variables. Textural properties, including the hardness, cohesiveness, springiness, gumminess, chewiness, and adhesiveness, were not influenced by any of the SPI, SC, and PBP treatments (p > 0.05), except for greater gumminess and chewiness for the PBP treatment than for SC. The present results indicate that PBP is comparable or even superior to SPI or SC in its emulsion-stabilizing effect and therefore could be used a substitute for the latter as a non-protein ingredient of pork emulsion batter.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Optimisation of Calcium Alginate and Microbial Transglutaminase Systems to form a Porcine Myofibrillar Protein Gel

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.590-598
    • /
    • 2009
  • The aim of this study was to model and optimize the calcium alginate (CA) and microbial transglutaminase (TG) systems to form a cold-set myofibrillar protein (MP) gel containing 0.1 M or 0.3 M NaCl using a response surface methodology. The gel strengths of cold-set and heat-induced MP gels, and cooking yields were measured. All measured parameters showed determination coefficients ($R^2$) above 0.7 without a lack-of-fit. The CA system had the best results with component ratios of 1.0:0.3:1.0 corresponding to sodium alginate, calcium carbonate and glucono-$\delta$-lactone, respectively, and was favourable at 0.1 M NaCl. In contrast, the TG system only had an effect on cold-set MP gelation at 0.3 M salt, and the optimal ratio of TG to sodium caseinate was 0.6:0.5. By combining the two systems at 0.3 M NaCl, an acceptable cold-set MP gel with an improved texture and high cooking yield could be formed. Therefore, these results indicated that the functionality of the cold-set MP gel could be enhanced by combining these two optimized gelling system.