• Title/Summary/Keyword: sodium activator

Search Result 115, Processing Time 0.033 seconds

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.

Preparation of Hydrated Liquid Crystalline Vesicles Containing High Content of Ceramide using a Solubilizer (가용화제를 활용한 세라마이드 고함량의 수화 액정형 베시클 개발)

  • Park, Min Seon;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-546
    • /
    • 2021
  • Hydrated liquid crystalline vesicles containing a high content of ceramide were prepared by constituting an optimal composition in which ceramides can be mutually self-associated with phospholipid and cholesterol. From the result of manufacturing various vesicles with different component composition, when the edge activator sodium deoxycholate (SDOC) and the solubilizer PEG-60 hydrogenated castor oil (HCO 60) were mixed to form vesicles, the smallest nano-sized particles were produced and the vesicle dispersion solution was weakly acidic and maintained the most stable state. In addition, it was confirmed through polarized light microscopy and thermal analysis that the addition of SDOC and HCO 60 had an effect on the inhibition of crystallinity of lipid components such as ceramide. The stability of the vesicle dispersion solution was maintained without change in appearance and viscosity even after long-term storage at high temperature for eight weeks.

A new phantom to evaluate the tissue dissolution ability of endodontic irrigants and activating devices

  • Kimia Khoshroo ;Brinda Shah;Alexander Johnson ;John Baeten ;Katherine Barry;Mohammadreza Tahriri ;Mohamed S. Ibrahim;Lobat Tayebi
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2020
  • Objective: The aim of this study was to introduce a gelatin/bovine serum albumin (BSA) tissue standard, which provides dissolution properties identical to those of biological tissues. Further, the study evaluated whether the utilization of endodontic activating devices led to enhanced phantom dissolution rates. Materials and Methods: Bovine pulp tissue was obtained to determine a benchmark of tissue dissolution. The surface area and mass of samples were held constant while the ratio of gelatin and BSA were varied, ranging from 7.5% to 10% gelatin and 5% BSA. Each sample was placed in an individual test tube that was filled with an appropriate sodium hypochlorite solution for 1, 3, and 5 minutes, and then removed from the solution, blotted dry, and weighed again. The remaining tissue was calculated as the percent of initial tissue to determine the tissue dissolution rate. A radiopaque agent (sodium diatrizoate) and a fluorescent dye (methylene blue) were added to the phantom to allow easy quantification of phantom dissolution in a canal block model when activated using ultrasonic (EndoUltra) or sonic (EndoActivator) energy. Results: The 9% gelatin + 5% BSA phantom showed statistically equivalent dissolution to bovine pulp tissue at all time intervals. Furthermore, the EndoUltra yielded significantly more phantom dissolution in the canal block than the EndoActivator or syringe irrigation. Conclusions: Our phantom is comparable to biological tissue in terms of tissue dissolution and could be utilized for in vitro tests due to its injectability and detectability.

Sodium Butyrate Alters Cell-Cell Interactions through Up-Regulation of E-Cadherin in Human Hepatocellular Carcinoma Cells (Sodium butyrate에 의한 E-cadherin의 발현증가와 세포간 상호작용의 변화)

  • Kwun, Hyun-Jin;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2009
  • Sodium butyrate (NaBt), a naturally occurring short chain fatty acid derived from carbohydrate metabolism in the gut, is known to exhibit strong anti-cancer potentials in various human cancer cells; however, its action mechanism is poorly understood. In the present study, we demonstrated that NaBt up-regulates levels of E-cadherin, a key cell adhesion molecule implicated as a tumor suppressor, in a cell type-specific manner. Although levels of p21, a potential activator for E-cadherin expression, were also up-regulated by treatment with NaBt in several types of cells, it does not seem to be associated with the activation of E-cadherin in the NaBt-treated cells. Instead, the data from promoter analysis suggest that NaBt up-regulates expression of E-cadherin at the transcription level by enhancing its promoter strength via a CCAAT-box. The elevated E-cadherin in the presence of NaBt was primarily localized at the cell-cell contacts, converting Hep3B cells into a more differentiated form.

Purification and Characterization of a Regulatory Protein XyIR in the D-Xylose Operon from Escherichia coli

  • Shin, Jae-Ho;Roh, Dong-Hyun;Heo, Gun-Young;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1002-1010
    • /
    • 2001
  • The D-xylose operon in Escherichia coli is known to be regulated by a transcriptional activator protein, XyIR, which is responsible for the expression of both xylAB and xylFGH gene clusters. The XyIR was purified to homogeneity by using the maltose binding protein fusion expression and purification systems involving two chromatography steps. The purified XyIR protein was composed of two subunits of 45 kDa, which was determined by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration. The purified XyIR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR to the xylA promoter was enhanced by adding xylose. The enhanced binding ability of XyIR in the presence of xylose was not diminished by adding glucose. The presumed XyIR binding site is located between 120 bp to 100 bp upstream the xylA initiation codon.

  • PDF

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator (화력발전소 바텀애쉬와 수산화나트륨 활성화제를 이용해 제작한 지오폴리머의 압축강도 특성)

  • An, Eung-Mo;Cho, Sung-Baek;Lee, Su-Jeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at $60^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.

An Improved, Reliable and Practical Kinetic Assay for the Detection of Prekallikrein Activator in Blood Products

  • Shin, In-Soo;Shim, Yun-Bo;Hong, Choong-Man;Koh, Hyun-Chul;Lee, Seok-Ho;Hong, Seung-Hwa
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.505-510
    • /
    • 2002
  • An improved kinetic assay for prekallikrein activator (PKA), a potential vasodilator, has been developed to be used as an indicator for quality control during production of human albumin preparations. It consists of two reaction stages. In the first stage, PKA and prekallikrein are incubated at $37^{\circ}C$ for 45 min to allow the transformation into kallikrein. Kallikrein, a serine protease, catalyzes the splitting of p-nitroaniline (pNA) from its substrate H-D-Pro-Phe-Arg-pNA(S-2302). The rate at which pNA is released was measured spectrophotometrically at 405 nm. Prekallikrein, a substrate of PKA was purified by DEAE ion-exchange chromatography and the major potential variations in the assay were optimized; pH 8.0 and 150 mM sodium chloride were chosen to give a proper ionic strength. Reaction times in the range of 10 to 360 min provided linear dose-response curves. The concentration of prekallikrein was adjusted to fall between 1:1 and 1:3 dilutions to generate a linear standard calibration curve. Under the optimized conditions, reproducibility was checked. In a precision test, the coefficient of variation (CV) stayed within ${\pm}4%$ and the dose-response curve showed a good correlation (${r^2}=0.999$). An accuracy test with an international standard of PKA afforded a mean recovery of 97.5%.

Effects of Propofol and Thiopental Sodium on the Maturation, Fertilization and Development of Porcine Oocytes (Propofol(2,6-disoprooylphenol)과 Thiopental Sodium이 돼지 난자성숙, 수정 및 발생에 미치는 영향)

  • 김주영;유정민;유성진;김주란;윤용달;정철회;김현찬;강성구
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • In oocyte retrieval, a vein anesthetic drug is commonly used for induction and maintenance of general anesthesia. Propofol and Thiopental sodium are frequently used for ultrasound-guided transvaginal oocyte retrieval. The present study aimed to assess the effects of Propofol and Thiopental on in vitro fertilization(IVF). Immature porcine oocytes were exposed to various concentrations ot Propofo1 and Thiopental sodium. The rates of oocyte maturation, fertilization and development were observed. The parthenogenetic effects of the anesthetics were also evaluated. The rate of oocyte maturation after exposure to high concentrations of the anesthetics for long time was significantly higher than that of the control. But the rate of fertilization after long-time exposure to the high concentration of the anesthetic drugs was significantly lower than that of the control. The results support that Propofo1 serves like other anesthetics described, as a parthenogenetic activator. Oocytes exposed to Thiopental sodium showed decreased rates of maturation and fertilization. These results suggest that usage of optimum concentration of anesthetic drug is important in increasing the rates of oocyte maturation, fertilization and development in IVF.

  • PDF

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.