• Title/Summary/Keyword: soda borosilicate glass

Search Result 11, Processing Time 0.025 seconds

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • Bang, Jae-Cheol;Lee, Ji-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from $100{\mu}m$ to $150{\mu}m$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over $300^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Fabrication of Soda Borosilicate Class-Coated Electrostatic Chucks (소다붕규산염유리 도포형 정전척의 제조)

  • 방재철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. Glass coating on the stainless steel substrate was 125 $\mu\textrm{m}$ thick. The adhesion of glass coating was found to be excellent such that it was able to withstand temperature cycling to over $300^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and high applied voltages. The deviations at elevated temperatures and high applied voltages are due to increased leakage current as the electrical resistivity of glass coating drops.

  • PDF

A Stud on the Abrasive Wheels Bonded with Soda-borosilicate Glass (Soda-borosilicate Glass를 결합재로 한 연삭 숫돌에 관한 연구)

  • 이희수;박정현;권오현
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.178-183
    • /
    • 1979
  • The carborundum abrasive specimens bonded with a soda-borosilicate glass were prepared. Samples fired at specified temperatures with various mixing ratio and forming pressure were examined in terms of the structure, bonding strength, and microscopic observations. Increasing the forming pressure up to 400kg/$\cm^2$, the structure became denser in proportion to the forming pressure. The bonding strength was generally increased with increasing the mixing ratio (Vb/Vg), but the bloating phenomena were observed when samples were fired above 95$0^{\circ}C$ with mixing ratio above 20%, consequently, the bonding strength was decreased. Samples fired at the temperature range 900~95$0^{\circ}C$ with mixing ratio 15~30% had the dense structure with various grades.

  • PDF

Strengthening of Borosilicate Glass by Ion Exchange for Lightweight Transparent Bulletproof Windows Materials (투명 방탄소재용 보로실리케이트 유리의 이온교환 강화)

  • Shim, Gyu-In;Eom, Hyengwoo;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.507-513
    • /
    • 2013
  • Transparent bulletproof windows play an important role in the munitions industry. The thickness of bulletproof windows including soda-lime silicate(SLS) glass, polyvinyl butyral, poly urethane, main defense(200MD), and safety film was reduced from 40mm to 29mm by adjustment of SLS glass laminated array. Borosilicate glasses generally have lower surface density and more excellent mechanical properties than SLS glass. Borosilicate glass was strengthened by ion exchange in the $KNO_3$ powder. The maximum mechanical properties were observed at $550^{\circ}C$ for 10min. The Vickers hardness, fracture toughness and 3-point bending strength of ion exchanged samples were about $775kg/mm^2$, $1.91MPa{\cdot}m^{1/2}$ and 764MPa each, which are about 27%, 149% and 249% higher than parent borosilicate glass, respectively. The penetration depth of K+ ion at $550^{\circ}C$ for 10min was $59.8{\mu}m$. As a result, the transparent bulletproof windows were predicted to be more lightweight by ion exchange of borosilicate glass. If the SLS glass for bulletproof windows is replaced by ion exchanged borosilicate glass, the bulletproof windows can be expected to be lightweight and thinner.

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • 방재철;이지형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from 100 $\mu\textrm{m}$ to 150 $\mu\textrm{m}$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over 300$^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Blackening of Inner Glass Surface in Fluorescent Lamps for LCD Backlight (LCD 백라이트용 형광램프의 흑화 현상)

  • Hwang, Ha-Chung;Jeong, Jong-Mun;Kim, Jung-Hyun;Kim, Dong-Jun;Bong, Jae-Hwan;Chung, Jae-Yoon;Koo, Je-Huan;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.481-486
    • /
    • 2008
  • The different degrees of blackening were observed at the inner surface of borosilicate, soda-lime, and aluminosilicate glass tubes having different sodium (Na) contents. The sodium contents ($Na_2O$) within the borosilicate, soda-lime, and aluminosilicate glass tubes were found to be 4%, 14%, and 0.06%, respectively. The degree of blackening was shown to increase as the sodium content within the glass of the fluorescent lamp containing Ne+Ar+Hg gas mixture. Higher degree of blackening was observed from the inner surface of the glass tube coated with $Y_2O_3$. The blackening was found to be originated from the amalgam of $NaHg_2$ generated by the chemical reaction between the mercury ions within the discharge gas and sodium within the glass tube during operation.

Influence of Glass Dielectric Property on the External Electrode Fluorescent Lamps (유리관의 유전 특성이 외부전극 형광램프에 미치는 영향)

  • Shin, Myeong-Ju;Jeong, Jong-Mun;Kim, Jung-Hyun;Kim, Ga-Eul;Lee, Mi-Ran;Yoo, Dong-Gun;Koo, Je-Huan;Hong, Byoung-Hee;Choi, Eun-Ha;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.330-337
    • /
    • 2007
  • Influence of glass dielectric property (dielectric constant K, dielectric loss) on the external electrode fluorescent lamps of the dielectric barrier discharge has been investigated with 4-different glasses. Conventional borosilicate glass tubes with $K=5.6{\sim}5.9$ and tan ${\delta}=5.0{\times}10^{-3}{\sim}6.0{\times}10^{-3}$ and aluminosilicate glass tubes with high K=6.6 and low tan ${\delta}=1{\times}10^{-4}$ and soda-lime glass tribes with K=7.7 and tan ${\delta}=1.37{\times}10^{-2}$ have been compared. The high value of dielectric constant K makes the capacitance of external electrode fluorescent lamps intensity and enhances the discharge efficiency. The dielectric loss of tan ${\delta}$ shows the factor of power consumption in the external electrode to induce heats and to be weak in pinhole stability. The aluminosilicate glass tubes of high K and low tan ${\delta}$ have been enhanced by $14{\sim}18%$ in luminance and efficiency in comparison with the conventional borosilicate glass tubes and the aluminosilicate external electrode fluorescent lamps are strong against the pinhole formation. Soda-lime glass tubes with high K and high tan ${\delta}$ are a little favorable in luminance and efficiency and they are very weak in pinhole occurrence.

Physico-Chemical Properties of $Tl_2O-B_2O_3-SiO_2$ Glasses and Their Phase Separations ($Tl_2O-B_2O_3-SiO_2$ 系 유리의 物理化學的 性質 및 그의 分相)

  • Kim, Kee-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.65-80
    • /
    • 1968
  • The physico-chemical properties of nine selected thallium borosilicate glasses and other 21 supplementary compositions were investigated. Their composition-property curves are found to be in many respects analogous to those of other borosilicate glasses containing lithia, soda, and lead oxide. It is indicated that certain minima found in the composition-property curves of thallium borosilicate glasses might be caused by a change in boron coordination as has been observed to occur in the $Na_2O-B_2O_3-SiO_2$ glasses. Typical effects of thallium ions on the borosilicate glass are summarized as follows: 1) Addition of thallium ions increased density, refractive index, water solubility, linear coefficient of thermal expansion, and dielectric constant. 2) Increased concentration of thallium decreased the softening point of the glasses, caused fluorescence under ultraviolet radiation and smeared out the absorption edges up to $15{\mu}$ in the infrared region. An extensive liquid immiscibility was found by replication electron microscope technique in the $Tl_2O-B_2O_3-SiO_2$ system. The immiscibility covers a composition range roughly from 55 wt. % Tl2O to the binary system $B_2O_3-SiO_2.$ By acid treatment, it was found that the immiscible glass consists of separate silica-rich and boron-rich phases.

  • PDF

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.