• 제목/요약/키워드: social media big data

검색결과 288건 처리시간 0.026초

소셜 빅 데이터를 이용한 이슈 감지 사례분석 (A Case Study of the Issue detected Analysis on Social Media Big Data)

  • 송은지;강민식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.682-683
    • /
    • 2014
  • 최근 IT업체들은 온라인 상에서 소비자들이 평소에 쏟아내는 의견들을 수집, 축적해서, 원하는 키워드를 중심으로 내용을 분석함으로써, 특정 주제에 대해 어떤 여론이 형성되고 있으며, 여론이 어떻게 전파되고 있는지 경로를 파악할 수 있는 소셜 빅데이터 분석 툴을 경쟁적으로 개발하고 있다. 본 논문에서는 소셜 빅 데이터를 분석함에 있어 이슈를 감지하고 예측하는 기술을 실제 사례에 적용하여 분석한 결과를 고찰해 보고자 한다. 소셜 미디어 데이터 패턴을 비교 분석하고 부정이슈 감지를 위해 부정 여론을 확산시키는데 영향을 미치는 내용과 작성자를 독립변수로 하고, 평균 이슈 도달 시간 및 속도를 종속변수로 정의한다. 부정 여론 형성의 영향력은 트윗수, 리트윗 수를 기준으로 이슈 감지한다. 분석결과 전체 트윗 중 리트윗 메시지가 큰 비중 차지하고 이슈에 대한 버즈가 증가할수록 리트윗 비중이 증가하였으며 크게 확산될 때는 리트윗량이 크게 증가하여 짧은 시간 안에 넓게 확산하였다.

  • PDF

소셜 미디어 빅 데이터 분석을 통한 이슈 감지 및 예측에 관한 연구 (A Study on the Issue detected and Forecast by Analysis of Social Media Big Data)

  • 강민식;송은지
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.629-630
    • /
    • 2014
  • 서비스 산업에 있어 기업 간의 경쟁이 날로 심화되어 가고 있는 가운데 효율적인 경영을 위해서는 시시각각으로 변하는 고객의 니즈를 파악하기 위해 그 어느 때 보다도 고객피드백이 필요한 시대이다. 최근 기업에서는 다양한 고객의 목소리가 담겨 있는 소셜 미디어상의 빅 데이터를 이용하여 고객의 피드백을 파악하려는 노력을 하고 있다. 따라서 모바일 스마트 혁명의 핵심 자원인 빅 데이터를 어떻게 분석, 활용 할 것인지 많은 기업들의 관심이 집중되고 있다. 본 연구에서는 이러한 소셜 빅 데이터를 분석하는 기술로서 최근 이슈를 감지하고 예측하는 방법을 제안하다. 이것은 기관이나 기업 등 분석대상과 관련된 소셜 데이터 자체를 분석하거나 그 외 관련 데이터와 연관 관계 분석 등 여러 가지 방법을 조합하여 부정적 이슈 등의 탐지가 가능하다.

  • PDF

Public Opinion on Lockdown (PSBB) Policy in Overcoming COVID-19 Pandemic in Indonesia: Analysis Based on Big Data Twitter

  • Suratnoaji, Catur;Nurhadi, Nurhadi;Arianto, Irwan Dwi
    • Asian Journal for Public Opinion Research
    • /
    • 제8권3호
    • /
    • pp.393-406
    • /
    • 2020
  • The discourse on the lockdown in Indonesia is getting stronger due to the increasing number of positive cases of the coronavirus and the death rate. As of August 12, 2020, the confirmed number of COVID-19 cases in Indonesia reached 130,718. There were 85,798 victims who have recovered and 5,903 who have died. Data show a significant increase in cases of COVID-19 every day. For this reason, there needs to be an evaluation of the government policy of the Republic of Indonesia in dealing with the COVID-19 pandemic in Indonesia. An evaluation of policies for handling the pandemic must include public opinion to determine any weaknesses of this policy. The development of public opinion about the lockdown policy can be understood through social media. During the COVID-19 pandemic, measuring public opinion through traditional methods (surveys) was difficult. For this reason, we utilized big data on social media as research data. The main purpose of this study is to understand public opinion on the lockdown policy in overcoming the COVID-19 pandemic in Indonesia. The things observed included: volume of Twitter users, top influencers, top tweets, and communication networks between Twitter users. For the methodological development of future public opinion research, the researchers outline the obstacles faced in researching public opinion based on big data from Twitter. The research results show that the lockdown policy is an interesting issue, as evidenced by the number of active users (79,502) forming 133,209 networks. Posts about the lockdown on Twitter continued to increase after the implementation of the lockdown policy on April 10, 2020. The lockdown policy has caused various reactions, seen from the word analysis showing 14.8% positive sentiment, 17.5% negative, and 67.67% non-categorized words. Sources of information who have played the roles of top influencers regarding the lockdown policy include: Jokowi (the president of the Republic of Indonesia), online media, television media, government departments, and governors. Based on the analysis of the network structure, it shows that Jokowi has a central role in controlling the lockdown policy. Several challenges were found in this study: 1) choosing keywords for downloading data, 2) categorizing words containing public opinion sentiment, and 3) determining the sample size.

빅 데이터를 이용한 호텔기업 CRM 및 보안에 관한 연구 (A Study on Hotel CRM(Customer Relationship Management) using Big Data and Security)

  • 공효순;송은지
    • 융합보안논문지
    • /
    • 제13권4호
    • /
    • pp.69-75
    • /
    • 2013
  • 기업에 있어 고객은 수입의 원천으로 기업의 발전을 위해서는 효과적인 고객관계관리(CRM: Customer Relationship Management)가 매우 중요하다. 이를 위해서는 고객의 요구를 파악하고 실제 고객이 필요로 하는 제품이나 서비스를 제공해야 한다. 그러나 점점 고객의 요구가 다양해지고 복합적인 형태를 갖게 되어 이를 파악하는 것이 어려워지고 있다. 최근 스마트 폰의 출현과 트위터, 페이스북과 같은 SNS의 발달로 실시간으로 다양한 고객의 목소리가 증가하고 있는 가운데 효율적인 CRM을 위해 이러한 빅 데이터를 이용 하는 것이 매우 효율적인 방법으로 부상하고 있다. 본 연구에서는 고객자체가 기업의 자산이며 서비스 산업의 대표라 할 수 있는 호텔기업의 CRM을 위해 빅 데이터를 활용하는 방법을 제안한다. 또한 빅 데이터 서비스를 이용하는데 있어 보안에 대한 문제점을 논의하고 대책을 강구한다.

로그 분석 처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법 (MapReduce-Based Partitioner Big Data Analysis Scheme for Processing Rate of Log Analysis)

  • 이협건;김영운;박지용;이진우
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.593-600
    • /
    • 2018
  • 인터넷과 스마트기기의 발달로 인해 소셜미디어 등 다양한 미디어의 접근의 용이해짐에 따라 많은 양의 빅데이터들이 생성되고 있다. 특히 다양한 인터넷 서비스를 제공하는 기업들은 고객 성향 및 패턴, 보안성 강화를 위해 맵리듀스 기반 빅데이터 분석 기법들을 활용하여 빅데이터 분석하고 있다. 그러나 맵리듀스는 리듀스 단계에서 생성되는 리듀서 객체의 수를 한 개로 정의하고 있어, 빅데이터 분석할 때 처리될 많은 데이터들이 하나의 리듀서 객체에 집중된다. 이로 인해 리듀서 객체는 병목현상이 발생으로 빅데이터 분석 처리율이 감소한다. 이에 본 논문에서는 로그 분석처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법을 제안한다. 제안한 기법은 리듀서 분할 단계와 분석 결과병합 단계로 구분하며 리듀서 객체의 수를 유동적으로 생성하여 병목현상을 감소시켜 빅데이터 처리율을 향상시킨다.

A Trend Analysis on E-sports using Social Big Data

  • Kyoung Ah YEO;Min Soo KIM
    • Journal of Sport and Applied Science
    • /
    • 제8권1호
    • /
    • pp.11-17
    • /
    • 2024
  • Purpose: The purpose of the study was to understand a trend of esports in terms of gamers' and fans' perceptions toward esports using social big data. Research design, data, and methodology: In this study, researchers first selected keywords related to esports. Then a total of 10,138 buzz data created at twitter, Facebook, news media, blogs, café and community between November 10, 2022 and November 19, 2023 were collected and analyzed with 'Textom', a big data solution. Results: The results of this study were as follows. Firstly, the news data's main articles were about competitions hosted by local governments and policies to revitalize the gaming industry. Secondly, As a result of esports analysis using Textom, there was a lot of interest in the adoption of the Hangzhou Asian Games as an official event and various esports competitions. As a result of the sentiment analysis, the positive content was related to the development potential of the esports industry, and the negative content was a discussion about the fundamental problem of whether esports is truly a sport. Thirdly, As a result of analyzing social big data on esports and the Olympics, there was hope that it would be adopted as an official event in the Olympics due to its adoption as an official event in the Hangzhou Asian Games. Conclusions: There was a positive opinion that the adoption of esports as an official Olympic event had positive content that could improve the quality of the game, and a negative opinion that games with actions that violate the Olympic spirit, such as murder and assault, should not be adopted as an official Olympic event. Further implications were discussed.

Relations between Reputation and Social Media Marketing Communication in Cryptocurrency Markets: Visual Analytics using Tableau

  • Park, Sejung;Park, Han Woo
    • International Journal of Contents
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.

도로 침수영역의 탐색을 위한 빅데이터 분석 시스템 연구 (A Study on the Big Data Analysis System for Searching of the Flooded Road Areas)

  • 송영미;김창수
    • 한국멀티미디어학회논문지
    • /
    • 제18권8호
    • /
    • pp.925-934
    • /
    • 2015
  • The frequency of natural disasters because of global warming is gradually increasing, risks of flooding due to typhoon and torrential rain have also increased. Among these causes, the roads are flooded by suddenly torrential rain, and then vehicle and personal injury are happening. In this respect, because of the possibility that immersion of a road may occur in a second, it is necessary to study the rapid data collection and quick response system. Our research proposes a big data analysis system based on the collected information and a variety of system information collection methods for searching flooded road areas by torrential rains. The data related flooded roads are utilized the SNS data, meteorological data and the road link data, etc. And the big data analysis system is implemented the distributed processing system based on the Hadoop platform.

해양수산 SNS 빅데이터 분석 결과 및 시사점 (SNS Big-data Analysis and Implication of the Marine and Fisheries Sector)

  • 박광서;이정민;이선량
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권2호
    • /
    • pp.117-125
    • /
    • 2017
  • SNS 빅데이터 분석은 소셜 미디어에서 생성되는 빅데이터로부터 숨겨진 가치를 찾아내는 것을 의미한다. 본고는 해양수산 분야의 국민적 관심사를 파악하기 위해 24개 키워드를 도출하여 SNS 빅데이터 분석을 실시하였다. 언급량이 많은 키워드는 수산물, 해운, 독도 순이었으며, 해양정책, 해양안보 등 국민적 관심사가 적은 키워드는 상대적으로 언급량이 미미했다. 매체별 언급량은 정부가 주도하는 분야는 뉴스에, 민간이 주도하거나 국민생활 연관성이 큰 경우는 블로그와 트위터에 많았다. 따라서 해양수산 정책 수립 시 SNS 빅데이터 분석을 활용해 국민적 관심사를 반영하고, 특히 부정적인 요인을 해소하는데 역점을 두어야 한다. 또한 매체별로 언급량이 다르므로 차별화된 홍보방안을 마련할 필요가 있다.