• Title/Summary/Keyword: snake algorithm

Search Result 85, Processing Time 0.026 seconds

A New Snake Model for Tracking a Moving Target Using a Mobile Robot (로봇의 이동물체 추적을 위한 새로운 확장 스네이크 모델)

  • Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.838-846
    • /
    • 2004
  • In the case where both a camera and a target are moving at the same time, the image background is successively changed, and the overlap with other moving objects is apt to be generated. The snake algorithms have been variously used in tracking the object, but it is difficult to be applied in the excessive overlap with other objects and the large bias between the snake and the target. To solve this problem, this paper presents an extended snake model. It includes an additional energy function which considers the temporal variation rate of the snake's area and a SSD algorithm which generates the template adaptive to the snake detected in the previous frame. The new energy function prevents the snake from over-shrinking or stretching and the SSD algorithm with adaptively changing template allows the prediction of the target's position in the next frame. The experimental results have shown that the proposed algorithm successfully tracks the target even when the target is temporarily occluded by other objects.

A Snake-Based Segmentation Algorithm for Object with Boundary Concavities (오목한 윤곽을 갖는 객체에서 스네이크 기반의 윤곽선 검출 방법)

  • Kim Shin-Hyoung;Jang Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.361-368
    • /
    • 2006
  • In this paper we present a snake-based scheme for efficiently detecting contours of objects with boundary concavities. The proposed method is composed of two steps. First, the object's boundary is detected using the proposed snake model. Second, snake points are optimized by inserting new points and deleting unnecessary points to better describe the object's boundary. The proposed algorithm can successfully extract objects with boundary concavities. Experimental results have shown that our algorithm produces more accurate segmentation results than the conventional algorithm.

Tracing Algorithm for Intelligent Snake-like Robot System

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.486-491
    • /
    • 2005
  • There come various types of robot with researches for mobile robot. This paper introduces the multi-joint snake robot having 16 degree of freedom and composing of eight-axis. The biological snake robot uses the forward movement friction and the proposed artificial snake robot uses the un-powered wheel instead of the body of snake. To determine the enable joint angle of each joint, the controller inputs are considered such as color and distance using PC Camera and ultra-sonic sensor module, respectively. The movement method of snake robot is sequential moving from head to tail through body. The target for movement direction is decided by a certain article be displayed in the PC Camera. In moving toward that target, if there is any obstacle then the snake robot can avoid by itself. In this paper, we show the method of snake robot for tracing the target with experiment.

  • PDF

Experimental Analysis of Algorithms of Splitting and Connecting Snake for Extracting of the Boundary of Multiple Objects (복수객체의 윤곽추출을 위한 스네이크 분리 및 연결 알고리즘의 실험적 분석)

  • Cui, Guo;Hwang, Jae-Yong;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.221-224
    • /
    • 2012
  • The most famous algorithm of splitting and connecting Snake for extracting the boundary of multiple objects is the nearest method using the distance between snake points. It often can't split and connect Snake due to object topology. In this paper, its problem was discussed experimentally. The new algorithm using vector between Snake segment is proposed in order to split and connect Snake with complicated topology of objects. It is shown by experiment of two test images with 3 and 5 objects that the proposed one works better than the nearest one.

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

Lane Extraction Using Grouped Block Snake Algorithm (그룹화 블록 스네이크 알고리즘을 이용한 차선추출)

  • 이응주
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.445-453
    • /
    • 2000
  • In this paper we propose the method which extracts lane using the grouped block snake algorithm. In the proposed algorithm, input image is divided into $8\times{8}$ blocks and then noise-included blocks are removed by a probability-based method. And also, we use hough transform to separate lane from the background image and suggest a grouped block snake method to detect road lane blocks. The proposed method reduces computational complexity and removes the noise in a more effective way compared to the pixel-based snake method.

  • PDF

Real-Time Detection of Moving Objects Using the Snake Algorithm (Snake 알고리즘을 이용한 실시간 이동물체 검출)

  • Yoon, Jong-Hoo;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.925-926
    • /
    • 2008
  • This paper presents an object tracking method using motion vectors generated in the MPEG4 encoding process and the snake algorithm for active contours. This paper shows the possibility of realtime object tracking during MPEG4 encoding process in a conventional surveillance system. The experiments is performed on a PC platform to prove the effectiveness of the method.

  • PDF

B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation (특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출)

  • Ha, Sangheon;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.215-224
    • /
    • 2013
  • This paper proposes a robust lane detection algorithm for bumpy or slope changing roads by estimating extrinsic camera parameters, which represent the pose of the camera mounted on the car. The proposed algorithm assumes that two lanes are parallel with the predefined width. The lane detection and the extrinsic camera parameter estimation are performed simultaneously by utilizing B-snake in motion compensated and merged feature map with consecutive sequences. The experimental results show the robustness of the proposed algorithm in various road environments. Furthermore, the accuracy of extrinsic camera parameter estimation is evaluated by calculating the distance to a preceding car with the estimated parameters and comparing to the radar-measured distance.

Generation of Locomotion for Snake-like Robot using Genetic Algorithm and Analysis for Selections of Partial Modules (유전알고리즘을 사용한 뱀형 로봇의 이동 생성 및 부분모듈 선택 분석)

  • Ahn, Ihn-Seok;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.661-666
    • /
    • 2009
  • Modular snake-like robots, which consist of series of modules, are robust for failure and have flexible locomotions for environment. However, they are difficult to control and few efficient and various locomotions are introduced yet. In this paper, GA based phase generation and trajectory generation approaches are implemented and compared for locomotion of snake-like robots and extended for analysis for selections of partial modules. In addition, modeling and simulation environments are implemented in Webots simulator and above GA based experiments for locomotion are executed for KMC snake-like robot.

An Improved Snake Algorithm Using Neighbouring Edges (근접 에지를 이용한 개선된 스네이크 알고리즘)

  • Jang, Seok-Woo;On, Jin-Wook;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.866-870
    • /
    • 2010
  • This paper presents an improved Snake algorithm that contains additional energy term related to adjacent edges. The suggested algorithm represents the distance between an adjacent edge and the current cell as energy, and extracts object contours more effectively by including the energy tenn to the whole energy function. The adjacent edge-based snake algorithm not only make it possible to detect object boundaries which are concave, but also can detect the boundaries of complex objects without weight adjustment. Experimental results show that the proposed method extracts object boundaries more accurately than other existing methods without loss of speed.