• 제목/요약/키워드: smooth muscle relaxation

검색결과 199건 처리시간 0.025초

당뇨병 백서의 복부 대동맥 운동성에 대한 Vit C 의 보호효과 (The Protective Effects of Ascorbic Acid on the Vascular Motilities in Streptozotocin- induced Diabetic Rat)

  • 김영진;양기민;조대윤;손동섭;이무열
    • Journal of Chest Surgery
    • /
    • 제34권7호
    • /
    • pp.515-523
    • /
    • 2001
  • 배경: 당뇨병 환자에서 사망률과 이환률의 원인은 70%이상 혈관계의 합병증에 기인한다. 이러한 합병증은 혈관 내피세포 이완 작용 이상과 연관되어 있으며 이는 oxygen free radical의 직접적인 독성으로 추정되어 본 연구는 당뇨를 유발시킨 백서 복부 대동맥 운동성에 대한 Vit C의 보호효과를 연구 목적으로 한다. 대상 및 방법: 백서 60마리를 실험군(n=33)과 대조군(n=27)으로 나누고 실험 군은 streptozotocin을 투여하여 당뇨를 유발시켰다. 각각 실험 군과 대조군을 ascorbic acid를 투여한 군과 투여하지 않은 군으로 세분한 후 ascorbic acid투여 직후, 6주, 9주, 12주후의 복부 대동맥 혈관근육의 운동성을 측정하였다. 결과: 대조군의 경우 6주째 복부 대동맥 절편에서 acetylcholine투여 후 정상적인 이완반응이 나타났으나 실험군의 경우 현저히 저하됨이 관찰되었다. 9, 12주 째 절편에서는 실험군 중 ascorbic acid투여군에서 acetylcholine에 의한 이완반응이 거의 대조군에서의 결과와 일치할 정도로 회복되었다. 결론: 이상의 결과로 당뇨병을 유발한 백서에서 내피세포 의존적인 장애가 나타남을 확인할 수 있었으며 이러한 장애는 ascorbic acid의 투여로 회복됨을 알 수 있었으며 그 효과는 항산화 작용에서 비롯된 것으로 생각되므로 ascorbic acid가 당뇨환자의 혈관성 질환에 대해 보호적 효과를 보일 수 있을 것으로 사료된다.

  • PDF

장미근(薔薇根) 메탄올 추출물의 혈관이완 기전에 대한 연구 (Study on the Mechanism of Vascular Relaxation of Methanol Extract of Rose multiflora Radix)

  • 김대중;조남근;이준경;조려화;이혁;안준석;엄재연;조규원;나한일;경은호;강대길;이호섭
    • 동의생리병리학회지
    • /
    • 제21권2호
    • /
    • pp.408-413
    • /
    • 2007
  • Vascular tone plays an important role in the regulation of blood pressure. In the present study, the methanol extract of Rosae multiflora Radix (MRM) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methly ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-${\alpha}$]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by MRM, respectively. But, the relaxation effect of MRM was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), verapamil, diltiazem, atropine, and propranolol, respectively. Moreover, incubation of endothelium-intact aortic rings with MRM increased the production of cGMP. Taken together, the present results suggest that MRM relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling. These results would be useful for further study to MRM on animal models with cardiovascular diseases.

흰쥐 기관평활근에 대한 GS 386의 칼슘억제 및 포스포디에스테라제 억제 작용 (Calcium Channel Blocking and Phosphodiesterase Inhibitory Action of GS386, a Dihydroisoquinoline Derivative, in Isolated Rat Trachea)

  • 장기철;이회영;강영진;구의본
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.373-380
    • /
    • 1996
  • 최근 본 연구실에서는 GS 386인 1-(4'-methoxybenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline이 적출된 토끼의 심방세포에서 $Ca^{++}$ 채널의 운동성 변화없이 $Ca^{++}$ 채널이 열릴 가능성을 줄임으로써 $Ca^{++}$ 전류의 증폭을 억제한다고 보고하였다. 이번 연구에서는 적출된 쥐의 기관지를 사용하여 GS 386의 작용기전에 대해 연구하였다. GS386은 carbachol $(0.3{\mu}M)$과 높은 농도의 $K^+$ (65.4mM)에 의해 수축된 쥐의 기관지를 용량-의존적으로 이완시켰으며 이때 $IC_{50}$는 5.24와 $5.67\;{\mu}M$이었다. verapamil은 carbachol에 의한 수축시 보다 높은 농도의 $K^+$에 의해 수축된 조직에 더욱 효과적으로 억제하였다. $Ca^{++}$이 없는 상태에서 $Ca^{++}$에 의한 수축은 GS386에 의해 억제되었다. 더욱이 높은 농도의 GS386$(100\;{\mu}M)$은 verapamil과는 다르게 carbachol뿐만 아니라 caffeine에 의한 위상성 수축을 억제 시키므로 GS386은 세포질내로 들어가 sarcoplasmic retuculum과 같은 근육 내부에 2차적인 영향을 나타내었다. 더군다나GS386은 verapamil에 의해 영향을 받지않는 (verapamil-insensitive component)이완을 보였고 쥐 기관지의 평활근에서 cAMP의 양을 증가 시켰다. 이러한 결과는 GS386의 작용기전이 $Ca^{++}$ 길항적인 작용 뿐만 아니라 posphodiesterase억제작용에 기인한다는 사실을 제시한다.

  • PDF

Adenosine의 심장 및 혈관에 대한 약리작용 (Pharmacological Action of Adenosine on the Cardiovascular System)

  • 안형수;이영미
    • 한국임상약학회지
    • /
    • 제21권1호
    • /
    • pp.6-13
    • /
    • 2011
  • Bolus intravenous injection of adenosine resulted the temporal decrease of systemic blood pressure and heart rate in the anesthetized rats. Adenosine also resulted the persistent decrease of contractility and heart rate in the isolated spontaneously beating rat right atria. Both of the above inhibition effets of adenosine were increased by the pretreatment of NBI (nitrobenzylthioinosine), whitch is an adenosine transport inhibitor, but decreased by the pretreatment of 8- phenyltheophy1line, which is an adenosine antagonist. In isolated thoracic aorta ring segment of normotensive rats, intact rings were relaxed by adenosine ($42.3{\pm}8.7%$) and ATP ($85.9{\pm}15.8%$) in the concentration of $10^{-4}M$, but rubbed rings were relaxed by adenosine ($35.2{\pm}1.9%$) and ATP ($11.3{\pm}9.0%$) in $10^{-4}M$. After pretreatment of L-NAME (N-Nitro-Larginine methyl ester), which is an NO inhibitor, adenosine-induced relaxation was not affected, but ATP-induced relax ation was significantly inhibited (P<0.01). Meanwhile, adenosine resulted almost same as vasorelaxation in isolated thoracic aorta of SHR comparing to those of normotensive rats. But, vasodilation responses of ATP in intact rings of SHR are significantly inhibited comparing to those of normotensive rats. Adenosine-induced relaxation is attenuated after 8-phenyltheophylline pretreatment, but increased after NBI pretreatment. However, ATP-induced relaxations are not affected by 8-phenyltheophylline or NBI pretreatment. These results suggested that the hypotensive effects of adenosine was due to the decrease of contractile force and heart rate through the A1 receptor and vasodilation are mediated by A2 receptor of the vascular smooth muscle. And, the heart protective and vasodilation effects of adenosine might suggest that it would be useful in the acute treatment of coronary artery disease.

적토룡 추출 단백분획의 프로테나제 유도 수용체-2의 활성화 및 형행개선 효과 (Protein Fraction Extracted from the Earthworm Lumbricus rubellus Activates Proteinase Activated Receptor-2 and is Effective on Hemokinesis)

  • 이철규;신장식;최영근;임채곤;조일환;김철
    • 약학회지
    • /
    • 제41권2호
    • /
    • pp.247-254
    • /
    • 1997
  • The proteinase-activated receptor (PAR-2) belongs to the family of seven transmembrane region receptors, like the thrombin receptor, it is activated by specific proteolytic clea vage of its extracellular amino terminus and a synthetic peptide (SLIGRL). The earthworm protein fraction (EPF) extracted from Lumbricus rubellus elicted dose- and endothelium-dependent relaxations in phenylephrine-contracted rat thoracic aorta, whereas heat inactivated EPF (0.5 ${\mu}g$ /ml) had no effect. In the presence of the nitric oxide synthase inhibitor NG-methyl-L-arginine (1.8 micro M), EPF (0.5 ${\mu}g$ /ml)-induced relaxations were partially inhibited. Furthermore, EPF (0.5 ${\mu}g$ /ml) dramatically caused relaxation of thrombin-desenstized rat thoracic aorta. These results indicate that EPF activates PAR-2 in vascular endothelial cell. Intravenous injection of EPF (20 mg/kg, bolus) into anesthetized rats produced a marked depressor response. EPF (0 ~ 80 ${\mu}g$ /ml, gradient) was very effective on increasing of perfusion volume in rabbit ear vessel preparations. These results imply the usefulness of EPF as a vascular smooth muscle relaxant and indicate that the activation of PAR-2 may be a mechanism of EPF on hemokinetic improvement.

  • PDF

저항동맥의 수축성에 대한 연구 (Effects of Na-K Pump Inhibition on Contractility of Resistant Arteries in the Rabbit)

  • 함시영;김기환;서경필
    • Journal of Chest Surgery
    • /
    • 제28권12호
    • /
    • pp.1079-1095
    • /
    • 1995
  • Recently endogenous digitalis-like substances were found in the blood of various cardiovascular diseases and they have been considered one of the causes of evoking hypertension. However, the mechanism of endogenous digitalis-like substances-induced hypertension is not clarified yet. Therefore, the effects of Na-K pump inhibition on the contractility of vascular smooth muscle[conduit and resistant artery were investigated, using organ bath and bioassay experiment. Aortic and carotid arterial rings[conduit artery and the branches of brachial and superior mesenteric artery[resistant artery were used to find the effect of Na-K pump inhibition. The results obtained were as followes;The magnitudes of contractions induced by norepinephrine, serotonin, or acetylcholine in all these arteries were significantly increased by the inhibition of Na-K pump. The increased contractile responses to these agonists, especially to serotonin, were much more prominant in resistant arteries. Nitroprusside-induced relaxations were attenuated by Na-K pump inhibition and there were no significant differences in the effects of Na-K pump inhibition on nitroprusside-induced relaxations of these blood vessels. Endothelium-dependent relaxation was suppressed by the inhibition of Na-K pump, especially by the administration of ouabain, and this inhibitory effect was much more prominent in the branches of superior mesenteric artery, compared with other arteries. In the branches of superior mesenteric arteries, endothelium-dependent relaxation was completely blocked by ouabain. The release of EDRF was partially suppressed by Na-K pump inhibition.From the above results, it is suggested that the hypertension due to the increase in vascular resistance can be evoked by the inhibition of Na-K pump and endogenous digitalis-like substances induce hypertension through this mechanism.

  • PDF

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.

Estrogen modulates serotonin effects on vasoconstriction through Src inhibition

  • Kim, Jae Gon;Leem, Young-Eun;Kwon, Ilmin;Kang, Jong-Sun;Bae, Young Min;Cho, Hana
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.11.1-11.9
    • /
    • 2018
  • Estrogen has diverse effects on cardiovascular function, including regulation of the contractile response to vasoactive substances such as serotonin. The serotonin system recently emerged as an important player in the regulation of vascular tone in humans. However, hyperreactivity to serotonin appears to be a critical factor for the pathophysiology of hypertension. In this study, we examined the modulatory mechanisms of estrogen in serotonin-induced vasoconstriction by using a combinatory approach of isometric tension measurements, molecular biology, and patch-clamp techniques. $17{\beta}$-Estradiol (E2) elicited a significant and concentration-dependent relaxation of serotonin-induced contraction in deendothelialized aortic strips isolated from male rats. E2 triggered a relaxation of serotonin-induced contraction even in the presence of tamoxifen, an estrogen receptor antagonist, suggesting that E2-induced changes are not mediated by estrogen receptor. Patch-clamp studies in rat arterial myocytes showed that E2 prevented Kv channel inhibition induced by serotonin. Serotonin increased Src activation in arterial smooth muscle required for contraction, which was significantly inhibited by E2. The estrogen receptor-independent inhibition of Src by E2 was confirmed in HEK293T cells that do not express estrogen receptor. Taken together, these results suggest that estrogen exerts vasodilatory effects on serotonin-precontracted arteries via Src, implying a critical role for estrogen in the prevention of vascular hyperreactivity to serotonin.

The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Kim, Hyeong-Dong;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.233-237
    • /
    • 2015
  • Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane $A_2$- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function.

The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways

  • Je, Hyun Dong;Kim, Hyeong-Dong;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.100-105
    • /
    • 2014
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane $A_2$ mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function.