DOI QR코드

DOI QR Code

Estrogen modulates serotonin effects on vasoconstriction through Src inhibition

  • Kim, Jae Gon (Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine) ;
  • Leem, Young-Eun (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Kwon, Ilmin (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Kang, Jong-Sun (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Bae, Young Min (Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine) ;
  • Cho, Hana (Single Cell Network Research Center, Sungkyunkwan University School of Medicine)
  • Received : 2018.07.13
  • Accepted : 2018.10.01
  • Published : 2018.12.30

Abstract

Estrogen has diverse effects on cardiovascular function, including regulation of the contractile response to vasoactive substances such as serotonin. The serotonin system recently emerged as an important player in the regulation of vascular tone in humans. However, hyperreactivity to serotonin appears to be a critical factor for the pathophysiology of hypertension. In this study, we examined the modulatory mechanisms of estrogen in serotonin-induced vasoconstriction by using a combinatory approach of isometric tension measurements, molecular biology, and patch-clamp techniques. $17{\beta}$-Estradiol (E2) elicited a significant and concentration-dependent relaxation of serotonin-induced contraction in deendothelialized aortic strips isolated from male rats. E2 triggered a relaxation of serotonin-induced contraction even in the presence of tamoxifen, an estrogen receptor antagonist, suggesting that E2-induced changes are not mediated by estrogen receptor. Patch-clamp studies in rat arterial myocytes showed that E2 prevented Kv channel inhibition induced by serotonin. Serotonin increased Src activation in arterial smooth muscle required for contraction, which was significantly inhibited by E2. The estrogen receptor-independent inhibition of Src by E2 was confirmed in HEK293T cells that do not express estrogen receptor. Taken together, these results suggest that estrogen exerts vasodilatory effects on serotonin-precontracted arteries via Src, implying a critical role for estrogen in the prevention of vascular hyperreactivity to serotonin.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI), National Research Foundation of Korea (NRF)

References

  1. Sasaki, H. et al. PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J. Clin. Invest. 124, 2464-2471 (2014). https://doi.org/10.1172/JCI70731
  2. Bittner, V. Menopause, age, and cardiovascular risk: a complex relationship. J. Am. Coll. Cardiol. 54, 2374-2375 (2009). https://doi.org/10.1016/j.jacc.2009.10.008
  3. Coylewright, M., Reckelhoff, J. F. & Ouyang, P. Menopause and hypertension: an age-old debate. Hypertension 51, 952-959 (2008). https://doi.org/10.1161/HYPERTENSIONAHA.107.105742
  4. Kim, E. S. & Menon, V. Status of women in cardiovascular clinical trials. Arterioscler. Thromb. Vasc. Biol. 29, 279-283 (2009). https://doi.org/10.1161/ATVBAHA.108.179796
  5. Reckelhoff, J. F. & Maric, C. Sex and gender differences in cardiovascular-renal physiology and pathophysiology. Steroids 75, 745-746 (2010). https://doi.org/10.1016/j.steroids.2010.05.020
  6. Grodstein, F. et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann. Intern. Med. 133, 933-941 (2000). https://doi.org/10.7326/0003-4819-133-12-200012190-00008
  7. Rosano, G. M., Vitale, C. & Fini, M. Cardiovascular aspects of menopausal hormone replacement therapy. Climacteric 12(Suppl 1), 41-46 (2009). https://doi.org/10.1080/13697130903012306
  8. Manson, J. E. et al. Estrogen plus progestin and the risk of coronary heart disease. N. Engl. J. Med. 349, 523-534 (2003). https://doi.org/10.1056/NEJMoa030808
  9. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605-613 (1998). https://doi.org/10.1001/jama.280.7.605
  10. Hulley, S. et al. Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 288, 58-66 (2002). https://doi.org/10.1001/jama.288.1.58
  11. Hodis, H. N. Assessing benefits and risks of hormone therapy in 2008: new evidence, especially with regard to the heart. Cleve. Clin. J. Med. 75(Suppl 4), S3-S12 (2008).
  12. Schnatz, P. F. Hormonal therapy: does it increase or decrease cardiovascular risk? Obstet. Gynecol. Surv. 61, 673-681 (2006). https://doi.org/10.1097/01.ogx.0000238674.98471.bb
  13. Haines, C. J. & Farrell, E. Menopause management: a cardiovascular risk-based approach. Climacteric 13, 328-339 (2010). https://doi.org/10.3109/13697130903450154
  14. Harman, S. M. Estrogen replacement in menopausal women: recent and current prospective studies, the WHI and the KEEPS. Gend. Med. 3, 254-269 (2006). https://doi.org/10.1016/S1550-8579(06)80214-7
  15. Watts, S. W. 5-HT in systemic hypertension: foe, friend or fantasy? Clin. Sci. 108, 399-412 (2005). https://doi.org/10.1042/CS20040364
  16. Watts, S. W., Morrison, S. F., Davis, R. P. & Barman, S. M. Serotonin and blood pressure regulation. Pharmacol. Rev. 64, 359-388 (2012). https://doi.org/10.1124/pr.111.004697
  17. Brenner, B. et al. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206-215 (2007). https://doi.org/10.1111/j.1471-4159.2007.04542.x
  18. Haliloglu, B. et al. Serotonin dilemma in postmenopausal women: is it low or high? Maturitas 60, 148-152 (2008). https://doi.org/10.1016/j.maturitas.2008.04.013
  19. Sung, D. J. et al. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase. Exp. Mol. Med. 45, e67 (2013). https://doi.org/10.1038/emm.2013.116
  20. Lin, H. et al. Enhancement of 5-HT2A receptor function and blockade of Kv1.5 by MK801 and ketamine: implications for PCP derivative-induced disease models. Exp. Mol. Med. 50, 47 (2018). https://doi.org/10.1038/s12276-018-0073-6
  21. Lu, R. et al. c-Src tyrosine kinase, a critical component for 5-HT2A receptormediated contraction in rat aorta. J. Physiol. 586, 3855-3869 (2008). https://doi.org/10.1113/jphysiol.2008.153593
  22. Bae, Y. M. et al. Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+currents. Biochem. Biophys. Res. Commun. 347, 468-476 (2006). https://doi.org/10.1016/j.bbrc.2006.06.116
  23. Cogolludo, A. et al. Serotonin inhibits voltage-gated K+currents in pulmonary artery smooth muscle cells: role of 5-HT2A receptors, caveolin-1, and KV1.5 channel internalization. Circ. Res. 98, 931-938 (2006). https://doi.org/10.1161/01.RES.0000216858.04599.e1
  24. Doggrell, S. A. The role of 5-HT on the cardiovascular and renal systems and the clinical potential of 5-HT modulation. Expert. Opin. Investig. Drugs 12, 805-823 (2003). https://doi.org/10.1517/13543784.12.5.805
  25. Cummings, S. A., Groszmann, R. J. & Kaumann, A. J. Hypersensitivity of mesenteric veins to 5-hydroxytryptamine- and ketanserin-induced reduction of portal pressure in portal hypertensive rats. Br. J. Pharmacol. 89, 501-513 (1986). https://doi.org/10.1111/j.1476-5381.1986.tb11150.x
  26. Thompson, L. P. & Webb, R. C. Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9, 277-281 (1987). https://doi.org/10.1161/01.HYP.9.3.277
  27. Huzoor, A., Chen, N. Y., Fossen, D. V. & Wallace, D. Increased vascular contractile sensitivity to serotonin in spontaneously hypertensive rats is linked with increased turnover of phosphoinositide. Life. Sci. 45, 577-583 (1989). https://doi.org/10.1016/0024-3205(89)90042-8
  28. Dohi, Y. & Luscher, T. F. Endothelin in hypertensive resistance arteries. Intraluminal Extra. Dysfunct. Hypertens. 18, 543-549 (1991). https://doi.org/10.1161/01.HYP.18.4.543
  29. Webb, R. C., Schreur, K. D. & Papadopoulos, S. M. Oscillatory contractions in vertebral arteries from hypertensive subjects. Clin. Physiol. 12, 69-77 (1992). https://doi.org/10.1111/j.1475-097X.1992.tb00294.x
  30. Moreno, L., Martinez-Cuesta, M. A., Pique, J. M., Bosch, J. & Esplugues, J. V. Anatomical differences in responsiveness to vasoconstrictors in the mesenteric veins from normal and portal hypertensive rats. Naunyn Schmiede. Arch. Pharmacol. 354, 474-480 (1996). https://doi.org/10.1007/BF00168439
  31. Holm, A. & Nilsson, B. O. Identification and characterization of new mechanisms in vascular oestrogen signalling. Basic. Clin. Pharmacol. Toxicol. 113, 287-293 (2013).
  32. Watanabe, T. et al. Estrogen receptor beta mediates the inhibitory effect of estradiol on vascular smooth muscle cell proliferation. Cardiovasc. Res. 59, 734-744 (2003). https://doi.org/10.1016/S0008-6363(03)00496-6
  33. Menazza, S. & Murphy, E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ. Res. 118, 994-1007 (2016). https://doi.org/10.1161/CIRCRESAHA.115.305376
  34. Sudhir, K. et al. Mechanisms of estrogen-induced vasodilation: in vivo studies in canine coronary conductance and resistance arteries. J. Am. Coll. Cardiol. 26, 807-814 (1995). https://doi.org/10.1016/0735-1097(95)00248-3
  35. Teoh, H., Quan, A., Leung, S. W. & Man, R. Y. Differential effects of 17betaestradiol and testosterone on the contractile responses of porcine coronary arteries. Br. J. Pharmacol. 129, 1301-1308 (2000). https://doi.org/10.1038/sj.bjp.0703164
  36. Karas, R. H. et al. Effects of estrogen on the vascular injury response in estrogen receptor alpha, beta (double) knockout mice. Circ. Res. 89, 534-539 (2001). https://doi.org/10.1161/hh1801.097239
  37. Mendelsohn, M. E. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? Circ. Res. 87, 956-960 (2000). https://doi.org/10.1161/01.RES.87.11.956
  38. Chen, Z. et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Invest. 103, 401-406 (1999). https://doi.org/10.1172/JCI5347
  39. Haynes, M. P. et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87, 677-682 (2000). https://doi.org/10.1161/01.RES.87.8.677
  40. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538-541 (2000). https://doi.org/10.1038/35035131
  41. Gustafsson, J. A. Estrogen receptor beta--getting in on the action? Nat. Med. 3, 493-494 (1997). https://doi.org/10.1038/nm0597-493
  42. Katzenellenbogen, B. S. & Korach, K. S. A new actor in the estrogen receptor drama--enter ER-beta. Endocrinology 138, 861-862 (1997). https://doi.org/10.1210/endo.138.3.5080
  43. Gustafsson, J. A. Estrogen receptor beta--a new dimension in estrogen mechanism of action. J. Endocrinol. 163, 379-383 (1999). https://doi.org/10.1677/joe.0.1630379
  44. Iafrati, M. D. et al. Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nat. Med. 3, 545-548 (1997). https://doi.org/10.1038/nm0597-545
  45. Karas, R. H., Patterson, B. L. & Mendelsohn, M. E. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 89, 1943-1950 (1994). https://doi.org/10.1161/01.CIR.89.5.1943
  46. Kim-Schulze, S. et al. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 94, 1402-1407 (1996). https://doi.org/10.1161/01.CIR.94.6.1402
  47. Lindner, V. et al. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ. Res. 83, 224-229 (1998). https://doi.org/10.1161/01.RES.83.2.224
  48. Venkov, C. D., Rankin, A. B. & Vaughan, D. E. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation 94, 727-733 (1996). https://doi.org/10.1161/01.CIR.94.4.727
  49. Losordo, D. W., Kearney, M., Kim, E. A., Jekanowski, J. & Isner, J. M. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89, 1501-1510 (1994). https://doi.org/10.1161/01.CIR.89.4.1501
  50. Register, T. C. & Adams, M. R. Coronary artery and cultured aortic smooth muscle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor beta. J. Steroid Biochem. Mol. Biol. 64, 187-191 (1998). https://doi.org/10.1016/S0960-0760(97)00155-6
  51. Berdanier, C. D., Dwyer, J. T. & Feldman, E. B. Plant foods and phytochemicals in human health. Handbook of Nutrition and Food. (CRC Press, Boca Raton, FL, 2007).

Cited by

  1. Comparison of Vascular Responses to Vasoconstrictors in Human Placenta in Preeclampsia between Preterm and Later Term vol.21, pp.8, 2020, https://doi.org/10.2174/1389201021666191217114111