Browse > Article
http://dx.doi.org/10.1038/s12276-018-0193-z

Estrogen modulates serotonin effects on vasoconstriction through Src inhibition  

Kim, Jae Gon (Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine)
Leem, Young-Eun (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine)
Kwon, Ilmin (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine)
Kang, Jong-Sun (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine)
Bae, Young Min (Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine)
Cho, Hana (Single Cell Network Research Center, Sungkyunkwan University School of Medicine)
Publication Information
Experimental and Molecular Medicine / v.50, no.12, 2018 , pp. 11.1-11.9 More about this Journal
Abstract
Estrogen has diverse effects on cardiovascular function, including regulation of the contractile response to vasoactive substances such as serotonin. The serotonin system recently emerged as an important player in the regulation of vascular tone in humans. However, hyperreactivity to serotonin appears to be a critical factor for the pathophysiology of hypertension. In this study, we examined the modulatory mechanisms of estrogen in serotonin-induced vasoconstriction by using a combinatory approach of isometric tension measurements, molecular biology, and patch-clamp techniques. $17{\beta}$-Estradiol (E2) elicited a significant and concentration-dependent relaxation of serotonin-induced contraction in deendothelialized aortic strips isolated from male rats. E2 triggered a relaxation of serotonin-induced contraction even in the presence of tamoxifen, an estrogen receptor antagonist, suggesting that E2-induced changes are not mediated by estrogen receptor. Patch-clamp studies in rat arterial myocytes showed that E2 prevented Kv channel inhibition induced by serotonin. Serotonin increased Src activation in arterial smooth muscle required for contraction, which was significantly inhibited by E2. The estrogen receptor-independent inhibition of Src by E2 was confirmed in HEK293T cells that do not express estrogen receptor. Taken together, these results suggest that estrogen exerts vasodilatory effects on serotonin-precontracted arteries via Src, implying a critical role for estrogen in the prevention of vascular hyperreactivity to serotonin.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Haines, C. J. & Farrell, E. Menopause management: a cardiovascular risk-based approach. Climacteric 13, 328-339 (2010).   DOI
2 Harman, S. M. Estrogen replacement in menopausal women: recent and current prospective studies, the WHI and the KEEPS. Gend. Med. 3, 254-269 (2006).   DOI
3 Katzenellenbogen, B. S. & Korach, K. S. A new actor in the estrogen receptor drama--enter ER-beta. Endocrinology 138, 861-862 (1997).   DOI
4 Gustafsson, J. A. Estrogen receptor beta--a new dimension in estrogen mechanism of action. J. Endocrinol. 163, 379-383 (1999).   DOI
5 Haliloglu, B. et al. Serotonin dilemma in postmenopausal women: is it low or high? Maturitas 60, 148-152 (2008).   DOI
6 Watts, S. W. 5-HT in systemic hypertension: foe, friend or fantasy? Clin. Sci. 108, 399-412 (2005).   DOI
7 Watts, S. W., Morrison, S. F., Davis, R. P. & Barman, S. M. Serotonin and blood pressure regulation. Pharmacol. Rev. 64, 359-388 (2012).   DOI
8 Brenner, B. et al. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206-215 (2007).   DOI
9 Sung, D. J. et al. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase. Exp. Mol. Med. 45, e67 (2013).   DOI
10 Schnatz, P. F. Hormonal therapy: does it increase or decrease cardiovascular risk? Obstet. Gynecol. Surv. 61, 673-681 (2006).   DOI
11 Lin, H. et al. Enhancement of 5-HT2A receptor function and blockade of Kv1.5 by MK801 and ketamine: implications for PCP derivative-induced disease models. Exp. Mol. Med. 50, 47 (2018).   DOI
12 Lu, R. et al. c-Src tyrosine kinase, a critical component for 5-HT2A receptormediated contraction in rat aorta. J. Physiol. 586, 3855-3869 (2008).   DOI
13 Bae, Y. M. et al. Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+currents. Biochem. Biophys. Res. Commun. 347, 468-476 (2006).   DOI
14 Lindner, V. et al. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ. Res. 83, 224-229 (1998).   DOI
15 Iafrati, M. D. et al. Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nat. Med. 3, 545-548 (1997).   DOI
16 Karas, R. H., Patterson, B. L. & Mendelsohn, M. E. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 89, 1943-1950 (1994).   DOI
17 Kim-Schulze, S. et al. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 94, 1402-1407 (1996).   DOI
18 Venkov, C. D., Rankin, A. B. & Vaughan, D. E. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation 94, 727-733 (1996).   DOI
19 Losordo, D. W., Kearney, M., Kim, E. A., Jekanowski, J. & Isner, J. M. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89, 1501-1510 (1994).   DOI
20 Register, T. C. & Adams, M. R. Coronary artery and cultured aortic smooth muscle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor beta. J. Steroid Biochem. Mol. Biol. 64, 187-191 (1998).   DOI
21 Berdanier, C. D., Dwyer, J. T. & Feldman, E. B. Plant foods and phytochemicals in human health. Handbook of Nutrition and Food. (CRC Press, Boca Raton, FL, 2007).
22 Thompson, L. P. & Webb, R. C. Vascular responsiveness to serotonin metabolites in mineralocorticoid hypertension. Hypertension 9, 277-281 (1987).   DOI
23 Cogolludo, A. et al. Serotonin inhibits voltage-gated K+currents in pulmonary artery smooth muscle cells: role of 5-HT2A receptors, caveolin-1, and KV1.5 channel internalization. Circ. Res. 98, 931-938 (2006).   DOI
24 Doggrell, S. A. The role of 5-HT on the cardiovascular and renal systems and the clinical potential of 5-HT modulation. Expert. Opin. Investig. Drugs 12, 805-823 (2003).   DOI
25 Cummings, S. A., Groszmann, R. J. & Kaumann, A. J. Hypersensitivity of mesenteric veins to 5-hydroxytryptamine- and ketanserin-induced reduction of portal pressure in portal hypertensive rats. Br. J. Pharmacol. 89, 501-513 (1986).   DOI
26 Huzoor, A., Chen, N. Y., Fossen, D. V. & Wallace, D. Increased vascular contractile sensitivity to serotonin in spontaneously hypertensive rats is linked with increased turnover of phosphoinositide. Life. Sci. 45, 577-583 (1989).   DOI
27 Dohi, Y. & Luscher, T. F. Endothelin in hypertensive resistance arteries. Intraluminal Extra. Dysfunct. Hypertens. 18, 543-549 (1991).   DOI
28 Webb, R. C., Schreur, K. D. & Papadopoulos, S. M. Oscillatory contractions in vertebral arteries from hypertensive subjects. Clin. Physiol. 12, 69-77 (1992).   DOI
29 Moreno, L., Martinez-Cuesta, M. A., Pique, J. M., Bosch, J. & Esplugues, J. V. Anatomical differences in responsiveness to vasoconstrictors in the mesenteric veins from normal and portal hypertensive rats. Naunyn Schmiede. Arch. Pharmacol. 354, 474-480 (1996).   DOI
30 Holm, A. & Nilsson, B. O. Identification and characterization of new mechanisms in vascular oestrogen signalling. Basic. Clin. Pharmacol. Toxicol. 113, 287-293 (2013).
31 Karas, R. H. et al. Effects of estrogen on the vascular injury response in estrogen receptor alpha, beta (double) knockout mice. Circ. Res. 89, 534-539 (2001).   DOI
32 Sasaki, H. et al. PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J. Clin. Invest. 124, 2464-2471 (2014).   DOI
33 Watanabe, T. et al. Estrogen receptor beta mediates the inhibitory effect of estradiol on vascular smooth muscle cell proliferation. Cardiovasc. Res. 59, 734-744 (2003).   DOI
34 Menazza, S. & Murphy, E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ. Res. 118, 994-1007 (2016).   DOI
35 Sudhir, K. et al. Mechanisms of estrogen-induced vasodilation: in vivo studies in canine coronary conductance and resistance arteries. J. Am. Coll. Cardiol. 26, 807-814 (1995).   DOI
36 Teoh, H., Quan, A., Leung, S. W. & Man, R. Y. Differential effects of 17betaestradiol and testosterone on the contractile responses of porcine coronary arteries. Br. J. Pharmacol. 129, 1301-1308 (2000).   DOI
37 Grodstein, F. et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann. Intern. Med. 133, 933-941 (2000).   DOI
38 Coylewright, M., Reckelhoff, J. F. & Ouyang, P. Menopause and hypertension: an age-old debate. Hypertension 51, 952-959 (2008).   DOI
39 Kim, E. S. & Menon, V. Status of women in cardiovascular clinical trials. Arterioscler. Thromb. Vasc. Biol. 29, 279-283 (2009).   DOI
40 Reckelhoff, J. F. & Maric, C. Sex and gender differences in cardiovascular-renal physiology and pathophysiology. Steroids 75, 745-746 (2010).   DOI
41 Rosano, G. M., Vitale, C. & Fini, M. Cardiovascular aspects of menopausal hormone replacement therapy. Climacteric 12(Suppl 1), 41-46 (2009).   DOI
42 Manson, J. E. et al. Estrogen plus progestin and the risk of coronary heart disease. N. Engl. J. Med. 349, 523-534 (2003).   DOI
43 Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605-613 (1998).   DOI
44 Bittner, V. Menopause, age, and cardiovascular risk: a complex relationship. J. Am. Coll. Cardiol. 54, 2374-2375 (2009).   DOI
45 Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538-541 (2000).   DOI
46 Mendelsohn, M. E. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? Circ. Res. 87, 956-960 (2000).   DOI
47 Chen, Z. et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Invest. 103, 401-406 (1999).   DOI
48 Haynes, M. P. et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87, 677-682 (2000).   DOI
49 Gustafsson, J. A. Estrogen receptor beta--getting in on the action? Nat. Med. 3, 493-494 (1997).   DOI
50 Hulley, S. et al. Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 288, 58-66 (2002).   DOI
51 Hodis, H. N. Assessing benefits and risks of hormone therapy in 2008: new evidence, especially with regard to the heart. Cleve. Clin. J. Med. 75(Suppl 4), S3-S12 (2008).