• Title/Summary/Keyword: smooth muscle cell

Search Result 398, Processing Time 0.026 seconds

The Pathophysiologic Roles of TRPM7 Channel

  • Park, Hyun Soo;Hong, Chansik;Kim, Byung Joo;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2014
  • Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to $Mg^{2+}$ and $Ca^{2+}$, and its channel activity is negatively regulated by free $Mg^{2+}$ and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

Roles of TLR-4 and NF-κB in Interleukin-6 Expression Induced by Heat Shock Protein 90 in Vascular Smooth Muscle Cells (혈관평활근세포에서 HSP90에 의한 IL-6 발현에 TLR-4와 NF-κB의 작용)

  • Rhim, Byung-Yong;Kim, Kang-Seong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1637-1643
    • /
    • 2008
  • This study has investigated whether extracellular HSP90 predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells to HSP90 not only enhanced IL-6 release but also profoundly induced IL-6 transcript via promoter activation. HSP90-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-3 and TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF). Curcumin, which inhibits dimerization of TLR-4, also attenuated the IL-6 induction by HSP90. Mutation at the NF-${\kappa}B$- or C/EBP-binding site in the IL-6 promoter region suppressed the promoter activation in response to HSP90. The gene delivery of $I{\kappa}B$ using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}B$ activity, attenuated the HSP90-induced IL-6 release from VSMCs. The present study proposes that extracellular HSP90 would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4 and NF-${\kappa}B$ would play active roles in the process.

Effect of Gamitonggyu-tang on Secretion of Airway Mucin and Contractility of Tracheal Smooth Muscle (가미통규탕(加味通竅湯)이 호흡기 뮤신 분비 및 기관 평활근 긴장도에 미치는 영향)

  • Lee, Nam-Yeol;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2007
  • Objectives In the present study, the author intended to investigate whether Gamitonggyu-tang (GTT) significantly affects (since the subject is GTT, you need an 's') in vivo and in vitro mucin secretion from airway epithelial cells. Methods In vivo experiment, mice's mucin which is on a hypersecretion of an airway, mice's tracheal goblet cells in hyperplasia and mice's intraepithelial mucosubstances were exposed with SO2 for 3 weeks. Effects of orally-administered GTT for 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed by using enzyme-linked immunosorbent assay (ELISA) and staining goblet cells with alcian blue. In vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GTT to figure out the effectiveness of 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analyzed.Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase (LDH) release. Also, the effect of GTT on contractility of isolated tracheal smooth muscle was investigated. Results (1) GTT inhibited hypersecretion of in vivo mucin. However, it did not affect the increase the number of goblet cells (2) GTT significantly increased mucin release from cultured HTSE cells, without significant cytotoxicity (3) GTT chiefly affected the 'mucin' secretion and did not affect the secretion of the other releasable glycoproteins with less molecular weight than mucin (4) GTT did not affect Ach-induced contraction of isolated tracheal smooth muscle.Conclusions This result suggests that GTT can increase mucin secretion during short-term treatment (in vitro) whereas it can inihibit hypersecretion of mucin during long-term treatment (in vivo). The author suggests that the effect GTT with their components should be further investigated and it is valuable to find from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Intracellular pH regulation of mesenterffic arteriolar smooth myocytes of rat

  • Cho, Hyun-Sook;Park, Ki-Rang;Jang, Yeon-Jin;Park, Chun-Sik;Lee, Chae-Hun m
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.57-57
    • /
    • 2001
  • Intracellular pH(pH$\sub$i/) is strictly regulated since it is related to various cellular events such as contractility, signal transduction, ion regulation, cell volume, and energy production etc. In physiological conditions, pH$\sub$i/ of arteriolar smooth muscle faced substantial pressure to be changed during the regulation of blood flow. Therefore it is very important to know the regulatory mechanism of pH$\sub$i/.(omitted)

  • PDF

Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches (쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향)

  • Choi, Soo-Seung
    • Journal of Chest Surgery
    • /
    • v.43 no.4
    • /
    • pp.345-355
    • /
    • 2010
  • Background: Extracellular and intracellular pH ($pH_o$ and $pH_i$), which can be changed in various pathological conditions such as hypoxia, affects vascular contractility. To elucidate the mechanism to alter vascular contractility by pH, the effects of pH on reactivity to vasocontracting agents, intracellular $Ca^{2+}$ influx, and $Ca^{2+}$ sensitivity in vascular smooth muscle were examined. Material and Method: Isometric contractions in rat superior mesenteric arteries (SMA) were observed. Intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) was recorded by microfluorometer using Fura-2/acetoxylmethyl ester in muscle cells. $pH_o$ was increased from 7.4 to 7.8 or decreased to 6.9 or 6.4. $pH_i$ was decreased by applying $NH_4^+$ or propionic acid or modulated by changing $pH_o$ after increasing membrane permeability using $\beta$-escin. Result: Decreases in $pH_o$ from 7.4 to 6.9 or 6.4 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the right and significantly increased half maximal effective concentration (EC50) to NE or SE. Increase in $pH_o$ from 7.4 to 7.8 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the left and significantly reduced EC50 to NE or SE. NE increased $[Ca^{2+}]_i$ in cultured smooth muscle cells from SMA and the increased $[Ca^{2+}]_i$ was reduced by decreases in $pH_o$. NE-induced contraction was inhibited by $NH_4^+$, whereas the resting tension was increased by $NH_4^+$ or propionic acid. When the cell membrane of SMA was permeabilized using ${\beta}$-escin, SMA was contracted by increasing extracellular $Ca^{2+}$ concentration from 0 to $10{\mu}M$ and the magnitude of contraction was decreased by a decrease in $pH_o$ and vice versa. Conclusion: From these results, it can be concluded that a decrease in $pH_o$ might inhibit vascular contraction by reducing the reactivity of vascular smooth muscle to vasoactive agents, $Ca^{2+}$ influx and the sensitivity of vascular smooth muscle to $Ca^{2+}$.

Low Grade Myofibroblastic Sarcoma of the Sternocleidomastoid Muscle (흉쇄유돌근에서 기인한 Low-Grade Myofibroblastic Sarcoma 1예)

  • Sim, Nam Suk;Hong, Hyun Jun;Song, Kee-Jae;Choi, Sung-Eun;Suh, Yun Suk;Lee, Eun Jung
    • Korean Journal of Head & Neck Oncology
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • Low-grade myofibroblastic sarcoma is a rare disorder of malignant soft tissue tumor and is usually occurred various regions that often manifests in the head and neck region. The most common clinical presentation of this entity is non-tender cervical lymphadenopathy. This disease usually presents high possibility of local recurrence and low possibility of distant metastasis. We report a rare case of low-grade myofibroblastic sarcoma occurring in the sternocleidomastoid muscle and invading to the mastoid tip. A 56-year-old male visited the clinic with a complaint of slowly growing postauricular mass for 6 months. Mass originating from sternomastoid muscle and invasion to mastoid tip was observed by imaging studies. Surgical complete excision with simple mastoidectomy was performed via modified facelift approach. The histopathologic findings revealed malignant spindle cell tumor with positive staining with smooth muscle actin. The patient has no recurrence for 2years without any complication.

Hyposmotic Cell Stretch Increases L-type Calcium Current in Smooth Muscle Cells of the Human Stomach

  • Kang, Tong-Mook;Kim, Chun-Hee;Kim, Min-Jung;Park, Myoung-Kyu;Uhm, Dae-Yong;Rhee, Jong-Chul;Rhee, Poong-Lyul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.39-39
    • /
    • 1998
  • Stretch-activated ion channel that is open by mechanical stress applied on the cell membrane is one of the classes of ion channels. Other than stretch-activated channel itself, it has been also reported that a variety of ion channels could be modulated by a mechanical cell stretch.(omitted)

  • PDF

Difference of Gene Expression in Venous Malformation (정맥기형 환자에 있어서의 유전자 발현 차이)

  • Kim, Taek Kyun;Oh, Eun Jung;Cho, Byung Chae;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.671-678
    • /
    • 2007
  • Purpose: Venous malformation(VM) which often causes pain and discomfort is the most common type of vascular malformations. Although it is presented with disfigured appearance and associated soft tissue or skeletal hypertrophy, the molecular bases of VMs are poorly understood. Differentially expressed genes(DEGs) of VMs were investigated to illuminate the molecular mechanism of the disease entity. Methods: Gene expressions of VM patients' subcutaneous tissue were studied in comparison with normal persons' by $GeneFishing^{TM}$ technique using the annealing control primers (ACPs) to identify DEGs. Candidate genes were sequenced and screened by basic local alignment search tool (BLAST) afterwards. Results: Among seventy DEGs identified, forty DEGs which had shown significantly different expression pattern were sequenced. Twenty eight out of 40 were up-regulated while 12 were down-regulated. BLAST searches revealed that 37 were known genes and 3 were unknown genes. Many genes were involved in the differentiation and remodeling of smooth muscle cells, opposed to the previous hypothesis that a lot of angiogenetic genes would be involved. Furthermore, several transcription factors and related genes, as well as cell signaling and metabolism regulators, were up regulated. Conclusion: It suggests that analysis of DEGs in VMs provide basic knowledge about its pathophysiology. and new therapeutic approaches.