DOI QR코드

DOI QR Code

The Pathophysiologic Roles of TRPM7 Channel

  • Park, Hyun Soo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Hong, Chansik (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • So, Insuk (Department of Physiology, Seoul National University College of Medicine)
  • Received : 2013.08.20
  • Accepted : 2013.11.18
  • Published : 2014.02.28

Abstract

Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to $Mg^{2+}$ and $Ca^{2+}$, and its channel activity is negatively regulated by free $Mg^{2+}$ and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.

Keywords

References

  1. Doyle JL, Stubbs L. Ataxia, arrhythmia and ion-channel gene defects. Trends Genet. 1998;14:92-98. https://doi.org/10.1016/S0168-9525(97)01370-X
  2. Kunzelmann K. Ion channels and cancer. J Membr Biol. 2005;205:159-173. https://doi.org/10.1007/s00232-005-0781-4
  3. Farias LM, Ocaña DB, Díaz L, Larrea F, Avila-Chávez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernández-Gallegos E, Camacho-Arroyo I, Dueñas-González A, Pérez-Cárdenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sánchez-Peña C, Camacho J. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res. 2004;64:6996-7001. https://doi.org/10.1158/0008-5472.CAN-04-1204
  4. Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda). 2004;19:285-292. https://doi.org/10.1152/physiol.00011.2004
  5. Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, Stühmer W. Oncogenic potential of EAG K+ channels. EMBO J. 1999;18:5540-5547. https://doi.org/10.1093/emboj/18.20.5540
  6. Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M. TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium. 2006;39:163-173. https://doi.org/10.1016/j.ceca.2005.10.006
  7. Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, Prieto JC, Diaz-Laviada I I. Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol. 2005;515:20-27. https://doi.org/10.1016/j.ejphar.2005.04.010
  8. Bödding M. TRP proteins and cancer. Cell Signal. 2007;19:617-624. https://doi.org/10.1016/j.cellsig.2006.08.012
  9. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426:517-524. https://doi.org/10.1038/nature02196
  10. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233-252. https://doi.org/10.1016/j.ceca.2005.06.028
  11. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619-647. https://doi.org/10.1146/annurev.physiol.68.040204.100431
  12. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218. https://doi.org/10.1186/gb-2011-12-3-218
  13. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, Ahidouch A, Sevestre H, Ouadid-Ahidouch H. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28:813-822. https://doi.org/10.1159/000335795
  14. Yee NS, Chan AS, Yee JD, Yee RK. TRPM7 and TRPM8 ion channels in pancreatic adenocarcinoma: potential roles as cancer biomarkers and targets. Scientifica. 2012:1.
  15. Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T. TRPM6 and TRPM7-Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007;1772:813-821. https://doi.org/10.1016/j.bbadis.2007.03.009
  16. Paravicini TM, Chubanov V, Gudermann T. TRPM7: a unique channel involved in magnesium homeostasis. Int J Biochem Cell Biol. 2012;44:1381-1384. https://doi.org/10.1016/j.biocel.2012.05.010
  17. Mederos y Schnitzler M, Wäring J, Gudermann T, Chubanov V. Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J. 2008;22:1540-1551.
  18. Mei ZZ, Xia R, Beech DJ, Jiang LH. Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin- related transient receptor potential channel 2. J Biol Chem. 2006;281:38748-38756. https://doi.org/10.1074/jbc.M607591200
  19. Bae CY, Sun HS. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin. 2011;32:725-733. https://doi.org/10.1038/aps.2011.60
  20. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell. 2001;7:1047-1057. https://doi.org/10.1016/S1097-2765(01)00256-8
  21. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003;121:49-60. https://doi.org/10.1085/jgp.20028740
  22. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590-595. https://doi.org/10.1038/35079092
  23. Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol. 2006;127:421-434. https://doi.org/10.1085/jgp.200509410
  24. Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol. 2002;4:329-336. https://doi.org/10.1038/ncb781
  25. Yogi A, Callera GE, Antunes TT, Tostes RC, Touyz RM. Transient receptor potential melastatin 7 (TRPM7) cation channels, magnesium and the vascular system in hypertension. Circ J. 2011;75:237-245. https://doi.org/10.1253/circj.CJ-10-1021
  26. Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem. 2005;280:37763-37771. https://doi.org/10.1074/jbc.M509175200
  27. Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol. 2006;127:525-537. https://doi.org/10.1085/jgp.200609502
  28. Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg2+- inhibited cation (MIC) channels. J Gen Physiol. 2002;119:487-507. https://doi.org/10.1085/jgp.20028551
  29. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium. 2009;45:300-309. https://doi.org/10.1016/j.ceca.2008.11.009
  30. Chen HC, Xie J, Zhang Z, Su LT, Yue L, Runnels LW. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS One. 2010;5:e11161. https://doi.org/10.1371/journal.pone.0011161
  31. Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Mol Brain. 2010;3:38. https://doi.org/10.1186/1756-6606-3-38
  32. Chubanov V, Mederos y Schnitzler M, Meißner M, Schäfer S, Abstiens K, Hofmann T, Gudermann T. Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium- dependent activity of the kinase-coupled cation channel TRPM7. Br J Pharmacol. 2012;166:1357-1376. https://doi.org/10.1111/j.1476-5381.2012.01855.x
  33. Zierler S, Yao G, Zhang Z, Kuo WC, Pörzgen P, Penner R, Horgen FD, Fleig A. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem. 2011; 286:39328-39335. https://doi.org/10.1074/jbc.M111.264341
  34. Qin X, Yue Z, Sun B, Yang W, Xie J, Ni E, Feng Y, Mahmood R, Zhang Y, Yue L. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol. 2013;168:1294-1312. https://doi.org/10.1111/bph.12012
  35. Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, Yue L. Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem. 2007;282: 25817-25830. https://doi.org/10.1074/jbc.M608972200
  36. Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol. 2005;126:137-150. https://doi.org/10.1085/jgp.200409185
  37. Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG. Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res. 2007;67:10929-10938. https://doi.org/10.1158/0008-5472.CAN-07-1121
  38. Numata T, Okada Y. Proton conductivity through the human TRPM7 channel and its molecular determinants. J Biol Chem. 2008;283:15097-15103. https://doi.org/10.1074/jbc.M709261200
  39. Penner R, Fleig A. The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7. Handb Exp Pharmacol. 2007; (179):313-328.
  40. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A. 2005;102:11510-11515. https://doi.org/10.1073/pnas.0505149102
  41. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006;26:159-178. https://doi.org/10.1080/10799890600637506
  42. Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001;291:1043-1047. https://doi.org/10.1126/science.1058519
  43. He Y, Yao G, Savoia C, Touyz RM. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res. 2005;96:207-215. https://doi.org/10.1161/01.RES.0000152967.88472.3e
  44. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci. 2004;95: 403-419. https://doi.org/10.1254/jphs.FP0040273
  45. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM. Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol. 2005;15:667-671. https://doi.org/10.1016/j.cub.2005.02.050
  46. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115:863-877. https://doi.org/10.1016/S0092-8674(03)01017-1
  47. Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif. 2007;40: 849-865. https://doi.org/10.1111/j.1365-2184.2007.00476.x
  48. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756-760. https://doi.org/10.1126/science.1163493
  49. Liu W, Su LT, Khadka DK, Mezzacappa C, Komiya Y, Sato A, Habas R, Runnels LW. TRPM7 regulates gastrulation during vertebrate embryogenesis. Dev Biol. 2011;350:348-357. https://doi.org/10.1016/j.ydbio.2010.11.034
  50. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG. TRPM7 is essential for Mg2+ homeostasis in mammals. Nat Commun. 2010;1:109. https://doi.org/10.1038/ncomms1108
  51. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW. TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem. 2006;281:11260-11270. https://doi.org/10.1074/jbc.M512885200
  52. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006;25:290-301. https://doi.org/10.1038/sj.emboj.7600931
  53. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. Calcium flickers steer cell migration. Nature. 2009;457:901- https://doi.org/10.1038/nature07577
  54. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron. 2006; 52:485-496. https://doi.org/10.1016/j.neuron.2006.09.033
  55. Oancea E, Wolfe JT, Clapham DE. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res. 2006;98:245-253. https://doi.org/10.1161/01.RES.0000200179.29375.cc
  56. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res. 2006;99:119-131. https://doi.org/10.1161/01.RES.0000233356.10630.8a
  57. Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation. 2013;128:101-114. https://doi.org/10.1161/CIRCULATIONAHA.112.000768
  58. Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J, Mangoni ME, Clapham DE. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A. 2013;110:E3037-E3046. https://doi.org/10.1073/pnas.1311865110
  59. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology. 2005;129:1504-1517. https://doi.org/10.1053/j.gastro.2005.08.016
  60. Yue D, Wang Y, Xiao JY, Wang P, Ren CS. Expression of TRPC6 in benign and malignant human prostate tissues. Asian J Androl. 2009;11:541-547. https://doi.org/10.1038/aja.2009.53
  61. Santoni G, Farfariello V, Amantini C. TRPV channels in tumor growth and progression. Adv Exp Med Biol. 2011;704:947-967. https://doi.org/10.1007/978-94-007-0265-3_49
  62. Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, Kauffman M, McCarthy JJ. Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol. 2001; 19:568-576. https://doi.org/10.1200/JCO.2001.19.2.568
  63. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001; 61:3760-3769.
  64. Dou Y, Li Y, Chen J, Wu S, Xiao X, Xie S, Tang L, Yan M, Wang Y, Lin J, Zhu W, Yan G. Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7. Oncol Lett. 2013;5:1010-1016.
  65. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 2008;99:2502-2509. https://doi.org/10.1111/j.1349-7006.2008.00982.x
  66. Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol. 2009;297:C493-C502. https://doi.org/10.1152/ajpcell.00624.2008
  67. Carandang R, Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Kannel WB, Wolf PA. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA. 2006;296:2939-2946. https://doi.org/10.1001/jama.296.24.2939
  68. Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, Cade JE, Gale CP, Burley VJ. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke. 2013;44:1360-1368. https://doi.org/10.1161/STROKEAHA.111.000151
  69. Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke. 1998;29:705-718. https://doi.org/10.1161/01.STR.29.3.705
  70. Sattler R, Tymianski M. Molecular mechanisms of calciumdependent excitotoxicity. J Mol Med (Berl). 2000;78:3-13. https://doi.org/10.1007/s001090000077
  71. MacDonald JF, Xiong ZG, Jackson MF. Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci. 2006;29:75-81. https://doi.org/10.1016/j.tins.2005.12.001
  72. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1:623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  73. Horn J, Limburg M. Calcium antagonists for acute ischemic stroke. Cochrane Database Syst Rev. 2000;(2):CD001928.
  74. Tymianski M, Charlton MP, Carlen PL, Tator CH. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res. 1993;607:319-323. https://doi.org/10.1016/0006-8993(93)91523-U
  75. Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36:106-112.
  76. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci. 1992;12:1882-1895.
  77. Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies-the need for new approaches. Cerebrovasc Dis. 2004;17(Suppl 1):153-166.
  78. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res. 2006;1077:187-199. https://doi.org/10.1016/j.brainres.2006.01.016
  79. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci. 2009;12:1300-1307. https://doi.org/10.1038/nn.2395
  80. Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, Joffres M, Kastarinen M, Poulter N, Primatesta P, Rodríguez-Artalejo F, Stegmayr B, Thamm M, Tuomilehto J, Vanuzzo D, Vescio F. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289:2363-2369. https://doi.org/10.1001/jama.289.18.2363
  81. Resnick LM, Laragh JH, Sealey JE, Alderman MH. Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity. N Engl J Med. 1983;309:888-891. https://doi.org/10.1056/NEJM198310133091504
  82. Resnick LM, Gupta RK, Bhargava KK, Gruenspan H, Alderman MH, Laragh JH. Cellular ions in hypertension, diabetes, and obesity. A nuclear magnetic resonance spectroscopic study. Hypertension. 1991;17:951-957. https://doi.org/10.1161/01.HYP.17.6.951
  83. Resnick LM. Cellular calcium and magnesium metabolism in the pathophysiology and treatment of hypertension and related metabolic disorders. Am J Med. 1992;93:11S-20S. https://doi.org/10.1016/0002-9343(92)90290-R
  84. Aviv A. Salt consumption, reactive oxygen species and cardiovascular ageing: a hypothetical link. J Hypertens. 2002;20:555-559. https://doi.org/10.1097/00004872-200204000-00001
  85. Schiffrin EL, Touyz RM. From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol. 2004;287:H435-H446. https://doi.org/10.1152/ajpheart.00262.2004
  86. Rubin H. The logic of the Membrane, Magnesium, Mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys. 2007;458:16-23. https://doi.org/10.1016/j.abb.2006.03.026
  87. Yoshimura M, Oshima T, Matsuura H, Ishida T, Kambe M, Kajiyama G. Extracellular Mg2+ inhibits capacitative Ca2+ entry in vascular smooth muscle cells. Circulation. 1997;95:2567-2572. https://doi.org/10.1161/01.CIR.95.11.2567
  88. Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R73-78. https://doi.org/10.1152/ajpregu.00515.2005
  89. Voets T, Nilius B. Modulation of TRPs by PIPs. J Physiol. 2007;582:939-944. https://doi.org/10.1113/jphysiol.2007.132522
  90. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279:19-25. https://doi.org/10.1074/jbc.M311201200
  91. Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol. 2008; 294:H1103-1118. https://doi.org/10.1152/ajpheart.00903.2007
  92. Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension. 2008;51:915-921. https://doi.org/10.1161/HYPERTENSIONAHA.107.100339
  93. Touyz RM, Schiffrin EL. Activation of the Na+-H+ exchanger modulates angiotensin II-stimulated Na+-dependent Mg2+ transport in vascular smooth muscle cells in genetic hypertension. Hypertension. 1999;34:442-449. https://doi.org/10.1161/01.HYP.34.3.442
  94. Touyz RM, Yao G. Inhibitors of Na+/Mg2+ exchange activity attenuate the development of hypertension in angiotensin II-induced hypertensive rats. J Hypertens. 2003;21:337-344. https://doi.org/10.1097/00004872-200302000-00025
  95. Dietrich A, Mederos Y Schnitzler M, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol. 2005;25:6980-6989. https://doi.org/10.1128/MCB.25.16.6980-6989.2005
  96. Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londoño JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest. 2010;120:3267-3279. https://doi.org/10.1172/JCI41348
  97. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335-346.
  98. Vennekens R. Emerging concepts for the role of TRP channels in the cardiovascular system. J Physiol. 2011;589:1527-1534. https://doi.org/10.1113/jphysiol.2010.202077
  99. Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry. 2005;76:1046-1057. https://doi.org/10.1136/jnnp.2004.048652
  100. Hara K, Kokubo Y, Ishiura H, Fukuda Y, Miyashita A, Kuwano R, Sasaki R, Goto J, Nishizawa M, Kuzuhara S, Tsuji S. TRPM7 is not associated with amyotrophic lateral sclerosis- parkinsonism dementia complex in the Kii peninsula of Japan. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:310-313.
  101. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM. Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol. 2005;15:667-671. https://doi.org/10.1016/j.cub.2005.02.050

Cited by

  1. The association between single-nucleotide polymorphisms of TRPM7 gene and breast cancer in Han Population of Northeast China vol.31, pp.7, 2014, https://doi.org/10.1007/s12032-014-0051-3
  2. Effects of angiotensin II on transient receptor potential melastatin 7 channel function in cardiac fibroblasts vol.9, pp.5, 2015, https://doi.org/10.3892/etm.2015.2362
  3. Scientific Opinion on Dietary Reference Values for magnesium vol.13, pp.7, 2014, https://doi.org/10.2903/j.efsa.2015.4186
  4. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR vol.73, pp.17, 2014, https://doi.org/10.1007/s00018-016-2149-6
  5. Effects of ginger and its pungent constituents on transient receptor potential channels vol.38, pp.6, 2014, https://doi.org/10.3892/ijmm.2016.2791
  6. Transient Receptor Potential Melastatin 7 Cation Channel Kinase : New Player in Angiotensin II–Induced Hypertension vol.67, pp.4, 2014, https://doi.org/10.1161/hypertensionaha.115.07021
  7. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels vol.48, pp.7, 2014, https://doi.org/10.1152/physiolgenomics.00120.2015
  8. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration vol.54, pp.7, 2014, https://doi.org/10.1007/s12035-016-0046-5
  9. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation vol.37, pp.10, 2014, https://doi.org/10.1161/atvbaha.117.309161
  10. TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling vol.33, pp.9, 2014, https://doi.org/10.1007/s00380-018-1146-0
  11. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses vol.201, pp.7, 2014, https://doi.org/10.4049/jimmunol.1800076
  12. TRPM7, Magnesium, and Signaling vol.20, pp.8, 2014, https://doi.org/10.3390/ijms20081877
  13. Focus on TRP channels in cystic fibrosis vol.81, pp.None, 2014, https://doi.org/10.1016/j.ceca.2019.05.007
  14. Investigating Phosphorylation Patterns of the Ion Channel TRPM7 Using Multiple Extraction and Enrichment Techniques Reveals New Phosphosites vol.30, pp.8, 2014, https://doi.org/10.1007/s13361-019-02223-5
  15. The Presence and Distribution of TRPM7 in the Canine Mammary Glands vol.10, pp.3, 2020, https://doi.org/10.3390/ani10030466
  16. Update on Calcium Signaling in Cystic Fibrosis Lung Disease vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.581645
  17. Ca2+ Signaling and Its Potential Targeting in Pancreatic Ductal Carcinoma vol.13, pp.12, 2014, https://doi.org/10.3390/cancers13123085
  18. Expression and prognostic value of TRPM7 in canine mammary tumours vol.19, pp.3, 2021, https://doi.org/10.1111/vco.12689
  19. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review vol.18, pp.20, 2021, https://doi.org/10.3390/ijerph182010708
  20. Modulators of TRPM7 and its potential as a drug target for brain tumours vol.101, pp.None, 2022, https://doi.org/10.1016/j.ceca.2021.102521
  21. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases vol.165, pp.1, 2022, https://doi.org/10.1111/imm.13420