• Title/Summary/Keyword: smoke temperatures

Search Result 41, Processing Time 0.025 seconds

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires According to Ventilation Method (터널화재시 환기방식에 따른 연기거동에 관한 실험적 연구)

  • 이성룡;정진용;김충익;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.691-698
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fires according to vepntilation method. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fires ranging from 6.6 to 10 cm in diameter corresponding to total heat release rate from 0.714 to 2.5 kW. Temperatures near the ceiling were lowered by installing the vent, and much lowered by operating fan compared wiht tile case without vent. In case of forced ventilation, the exhaust fan was more effective than the intake fan. Vertical temperatures at the upper part of the tunnel were also lowered by installing the vent. But, when suction fan was operated, temperatures at the lower part of the tunnel were higher than that without vent.

An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section (터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한)

  • Lee, Sung-Ryong;Ryou, Hong-Sun;Kime, Choong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

An Experimental Study on the Effect of the Balcony on the Vertical Smoke Movement of the High Rise Building (고층건물의 수직방향 연기거동에 미치는 발코니의 영향에 관한 실험적 연구)

  • Yang Seung-Shin;Kim Sung-Chan;Ryou Hong-Sun;Shim Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.42-48
    • /
    • 2005
  • The present study investigates the effect of balcony on external smoke movement of high rise building through the fire tests of the 1/10 reduced model scale using Froude scaling. A hexane pool fire is used to examine the smoke movement for various opening sizes of balcony and temperature distributions are measured by T-type thermocouples. Also, hydrogen bubble technique is applied to visualize the smoke movement near the balcony. Measured temperatures of the closed balcony is 2.5 times higher than those of the open balcony because the external smoke in case of the closed balcony rise along the vertical wall. The maximum vertical temperature of partially closed balcony is similar with fully closed balcony and mean temperature inside of balcony increases as opening size of balcony decreases. The experimental results show that the balcony space plays an important roles in preventing fire propagation and cooling of smoke layer. In order to ensure the fire safety in high rise building design, a series of systematic researches are required to examine the various type of balconies.

Characteristics of Smoke Propagation in Railway Tunnels with Rescue Station (구난역을 갖는 철도 터널 내부의 연기거동 특성)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.13-18
    • /
    • 2009
  • The main objective of the present study is to investigate smoke propagation in railway tunnels with rescue stations. In particular, based on measurement of HRR (heat release rate) for pool fires formed at different locations, the influence of fire source location on smoke behavior is examined. The fuel is n-heptane and pool fires are generated with a square length 4cm. With the use of MVHS (Modified Volumetric Heat Source) model for fire source, extensive numerical simulations are performed by using the commercial code FLUENT (Ver.6.3) Predicted smoke temperatures and smoke propagation are discussed. From numerical predictions, it is found that ventilation systems may be necessary in the railway tunnels because the smoke moves along the tunnel, and consequently it enters the non-accident tunnel. It is also confirmed that the cross-passage and fire protection wall systems contribute to control the smoke.

A Study on Smoke Movement Characteristics for Water spray system Installation in Tunnel (터널내 수분무 시설 설치시 연기유동 특성 연구)

  • Lim, Kyung-Bum;Kim, Ha-Young;Yoo, Ji-Oh;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.230-233
    • /
    • 2008
  • In this study, we conducted an FDS simulation for the purpose of carrying out a basic assessment of the usefulness of the water spray for fire extinguishing. We analyzed the effect of securing the stability in temperature and smoke density in case of fire according to fire intensities and changes in wind speed. When there was no wind speed in tunnels, it was effective in securing the safety of people because the cooling effect of the water spray system had an excellent effect on reducing temperatures and smoke densities there.

  • PDF

Pressure Differentials in the Elevator Lobby Depending on the Reference Pressures of the Pressurizing Dampers (급기가압 댐퍼의 설정 기준압에 따른 부속실 차압 특성 연구)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.12-17
    • /
    • 2007
  • This paper investigated pressure differentials in the elevator lobby depending on reference pressures of the pressurizing damper using FDS fire modeling. The results showed the temperatures and pressures in the contained fire room with small leak gaps can increase significantly. Setting reference pressure of the pressurizing dampers to 0 Pa can cause reduction of real pressure differentials and air velocity to resist smoke flow. This would cause smoke movement from fire room to elevator lobby which should be safe area for evacuation.

Fire Suppression Effect of PPV with Water Mist System (미세물분무를 이용한 PPV의 화재진압효과)

  • Kim, Sung-Won;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2003
  • To inject fresh air into a fire room, Positive Pressure Ventilation (PPV) can be used and the blower of PPV increases inside pressure of the room. It makes high flow rate of products of combustion, smoke and heat from the structure, and it is very helpful to fireman on the fire extinguishing work. The flame moves to the direction of airflow and the temperature of flame can be decreased rapidly. In this experiment, a water mist system is applied to PPV to increase the effectiveness, and various effective factors are studied. n-Heptane and pine wood stick were used as fuel. Temperatures at the above and behind the combustion pan were strongly reduced by the water mist system and by the convective cooling with airflow. The smoke density was also decreased by PPV with water mist system and it can be explained by the absorption of smoke particles on the water mist droplet and by the strong exhausting effects of mobile fan.

A Study on the Behaviour of Smoke Spread Caused by Vehicle Fire in a Road Tunnel (터널 내 차량 화재에 따른 연기 확산 거동에 관한 연구)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.365-372
    • /
    • 2012
  • This paper aims to evaluate the effects that presence, installation number and capacity of ventilation vent and presence of multiple fire sources have on the behaviour of smoke temperature induced by vehicle fire in road tunnel. Six types of scenarios were assumed and FDS was ran to simulate them. As the number of ventilation vents increases, the smoke temperature are calculated to be reduced, but it is shown that effects exerted by two ventilation vents are almost similar to ones by three ventilation vents. Capacity of ventilation vent has a greater impact on the reduction of smoke temperature than installation number of ventilation vents. Smoke temperatures computed for all scenarios except for scenario No. 1 (without ventilation vent) and scenario No. 6 (with multiple fire sources) above fire source are analyzed to be under $400^{\circ}C$ and it means that the radiation of smoke layer above fire source doesn't induce the ignition of materials around fire source.

Derivations of Positive Pressure Condition for Development of Foldable Safe Pathway in Railway Tunnel Fires (철도터널화재용 접이식 대피통로 개발을 위한 양압 조건 도출)

  • Kim, JiTae;Ro, Kyoungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.284-289
    • /
    • 2019
  • The Korea Foldable safe pathway system is an evacuation support system to get temporary evacuation route in railway tunnel and large space fires. A prevention smoke screen is unfolded in fires and it is needed to prevent heat and smoke from fire source. Therefore, ventilation system for positive pressure condition is equipped with foldable safe pathway system. Numerical analyses of temperature and pressure distribution with distance from fire source were performed considering fire scenario of new train vehicle. The smoke temperatures did not exceed $200^{\circ}C$ that distance from the fire source was more than 20 m and smoke pressure was reduced with distance from fire source. Maximum smoke pressure was 14 Pa and average pressure was 6 Pa in position of prevention smoke screen. As results, to install foldable safe pathway system, ventilation system is need to maintain 6 Pa positive pressure condition.