DOI QR코드

DOI QR Code

A Study on the Behaviour of Smoke Spread Caused by Vehicle Fire in a Road Tunnel

터널 내 차량 화재에 따른 연기 확산 거동에 관한 연구

  • 윤용균 (세명대학교 소방방재학과) ;
  • 주은혜 (세명대학교 대학원 소방방재공학과)
  • Received : 2012.10.22
  • Accepted : 2012.10.25
  • Published : 2012.10.31

Abstract

This paper aims to evaluate the effects that presence, installation number and capacity of ventilation vent and presence of multiple fire sources have on the behaviour of smoke temperature induced by vehicle fire in road tunnel. Six types of scenarios were assumed and FDS was ran to simulate them. As the number of ventilation vents increases, the smoke temperature are calculated to be reduced, but it is shown that effects exerted by two ventilation vents are almost similar to ones by three ventilation vents. Capacity of ventilation vent has a greater impact on the reduction of smoke temperature than installation number of ventilation vents. Smoke temperatures computed for all scenarios except for scenario No. 1 (without ventilation vent) and scenario No. 6 (with multiple fire sources) above fire source are analyzed to be under $400^{\circ}C$ and it means that the radiation of smoke layer above fire source doesn't induce the ignition of materials around fire source.

본 논문에서는 환기구의 존재, 환기구 설치 대수, 환기구 용량, 복수 화원의 존재가 도로터널에서 발생한 차량 화재에 의한 연기 온도 분포에 미치는 영향을 평가하였다. 6개의 시나리오를 가정하였으며 FDS를 이용하여 시나리오 해석을 실시하였다. 해석 결과 환기구의 설치 대수가 증가함에 따라 연기의 온도는 감소하는 것으로 나타났지만, 환기구의 설치 대수가 2대인 경우와 3대인 경우에 온도 감소 효과는 거의 같은 것으로 나타났다. 환기구의 설치 용량은 환기구의 설치 대수 보다 연기 온도 감소에 더 큰 영향을 주는 것으로 해석되었다. 환기구가 없는 시나리오 No. 1과 복수 화원을 갖는 시나리오 No. 6를 제외한 나머지 시나리오에 대해서 해석한 결과 화원 상부에서의 연기 온도는 모두 $400^{\circ}C$ 이하로 나타났는데, 이는 화원 상부 연기층에서 발생하는 복사에 의해 화원 주변 가연물의 착화가 어렵다는 것을 나타낸다.

Keywords

References

  1. Chang, S.H., S.W. Choi, J.W. Kwon and G.J. Bae, 2006, Evaluation of fire-induced damage to structural members in tunnels, J. of KSCE 26.3C, 219-228.
  2. Kim, H.Y., H.J. Kim, K.S. Cho, J.S. Lee and K.H. Kwan, An experimental study on thermal damage and spalling of concrete lining in tunnel fire, J. of Korean Institute of Fire Sci. & Eng. 23.3. 110-120.
  3. Hertz, K.D. and L.S. Sorensen, 2005, Test method for spalling of fire exposed concrete, Fire Safety J. 40, 466-476. https://doi.org/10.1016/j.firesaf.2005.04.001
  4. Lacroix, D. and A. Haack, 2004, PIARC design criteria for resistance to fire for road tunnel structures, In Joint Issue ITA/PIARC Route-Roads on Fire Safety in Tunnels, 64-71.
  5. Lee, J.S. and T.S. Ahn, 2006, Needs of fireproofing for tunnel, J. of KSMI 10.6, 6-11.
  6. Lonnermark, A., 2005, On the characteristics of fires in tunnels, Ph D. Thesis, Lund University, 3-11.
  7. MLTM, 2009, Guideline for installation of safety facility in road tunnel, 70.
  8. MLTM, 2011, Status reference for road bridge and tunnel. NEMA, 2011, National audit for 2011.
  9. NFPA, 2011, NFPA 502 : Standard for road tunnels, bridges, and other limited access highways, NFPA, 24-29.
  10. NIST, 2007, Fire dynamics simulator (Version 5) : User's guide, NIST, 3-5.
  11. OO E & C, 2010, Design report for OO tunnel.
  12. Quintiere, J.G, 1998, Principles of fire behavior, Delmar Publishers, 60-62.
  13. Shin, H.S., 2011, Major technical challenges for construction of submarine tunnel, Proc. 2011 KSRM Fall Symposium, KSRM, 35-43.
  14. Thunderhead Eng., 2010, PyroSim User Mannual, Thunderhead Eng., 7.
  15. Won, J.P., M.J. Choi, C.I. Jang and S.W. Lee, 2009, Applied time-temperature curve for safety evaluation in the road tunnel by fire, J. of KSCE 29.5A, 551-555.