• Title/Summary/Keyword: smoke production rate

Search Result 57, Processing Time 0.028 seconds

Synergistic Effect of 3A Zeolite on The Flame Retardant Properties of Poplar Plywood Treated with APP

  • Wang, Mingzhi;Ji, Haiping;Li, Li
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.258-264
    • /
    • 2015
  • To evaluate the influence of 3A zeolite on the flame retardant properties of poplar plywood. Ammonium polyphosphate (APP) and 3A zeolite were used as flame retardants to prepare plywood samples. The combustion properties, such as heat release rate (HRR), total heat release (THR), mean CO and $CO_2$ yield, smoke production rate (SPR), and total smoke production (TSP), were characterized by a cone calorimeter. A synergistic effect was observed between 3A zeolite and APP on reducing the HRR and mean CO yield. The probable flame retardation mechanism was proposed.

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

Combustive Characteristics of Wood Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acids (알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida specimens treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylene-diaminomethyl-bis-phosphonic acid (MDEDAP). Pinus rigida Plates were painted in three times with 15 wt% alkylenedi-aminoalkyl-bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with chemicals showed the later time to peak mass loss rate ($TMLR_{peak}$) = (315~420) s than that of virgin plate by reduc-ing the burning rate except for $TPMR_{peak}$ (280 s) treated with DMDAP. In adition, the specimens treated with chemicals showed both the higher total smoke release rate (TSRR) (407.3~902.0) $m^2/m^2$ and $CO_{mean}$ production (407.3~902.0) $m^2/m^2$ than those of virgin plate. Especially, for the specimens treated with PIPEABP, 1st-smoke production rate (1st-SPR) (0.1250~0.1297) g/s was lower than that of virgin plate, while the 2nd-SPR (0.183 g/s) was higher. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated alkylenediaminoalkyl-bis-phos-phonic acids in the virgin Pinus rigida.

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds (붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

Risk Assessment of Smoke Generated During Combustion for Some Wood (일부 목재의 연소 시 발생되는 연기의 위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.373-380
    • /
    • 2022
  • In this study, Chung's equations 1, 2, and 3 were extended to standardize smoke safety rating evaluation in case of fire, and Chung's equations-V, smoke performance index-V, and smoke growth index-V were calculated. Five types of wood were selected and their smoke indices were measured using the cone calorimeter method according to ISO 5660-1. The smoke risk was graded by the smoke risk index-VI according to Chung's equation-VI. Smoke risk index-VI increased in the order of PMMA (1) ≈ maple (1.01) < ash (1.57) < needle fir (4.98) < paulownia (46.15) < western red cedar (106.26). It was predicted that maple and ash had the lowest smoke risk, and paulownia and western red cedar had the highest. The five samples' CO mean production rate (COPmean) was 0.0009~0.0024 g/s, indicating that these woods were incompletely burned than the polymethyl methacrylate (PMMA) reference material. Regarding the smoke properties of the chosen woods, the smoke performance index-V (SPI-V) increased as the bulk density increased, and the smoke risk index-VI (SRI-VI) decreased.

Combustion Properties of the Quercus variabilis and Zelkova serrata Dried at Room Temperature (II) (자연 건조된 굴참나무와 느티나무 목재의 연소성(II))

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2010
  • Wood has an essential drawback such as high combustion ability. The purpose of this paper is to examine the combustion properties of the quercus variabilis and zelkova serrata dried at room temperature. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO/$CO_2$ production and smoke obscuration. The total heat release (THR), $140.2\;MJ/m^2$ of the quercus variabilis under an external $50\;kW/m^2$ was high in comparison with THR $85.7\;MJ/m^2$ for the zelkova serrata. Furthermore, the quercus variabilis has high total smoke production (TSP), $3.50\;m^2$ compared with TSP $0.65\;m^2$ of zelkova serrata. Thease results depend on the bulk density of tested wood species. In addition, the CO/$CO_2$ production ratio of zelkova serrata and quercus variabilis was measured as 0.053, 0.043, respectively. Also, zelkova serrata showed an increase of fire-resistance attributed to char formation compared with that of quercus variabilis.

Combustion Chracteristics of Wood Treated with Bis-(dialkylaminoalkyl) Phosphinic Acids (비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid (DBDAP). Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It is supposed that the combustion-retardation properties were improved by the partial due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the lower total smoke release rate (TSRR) ($16.94{\sim}18.92m^2/m^2$) and lower $CO_{2mean}$ production (1.98~2.09 kg/kg) than those of virgin plate. However the specimens treated with chemicals showed both the higher peak mass loss rate (PMLR) (0.1250~0.1297 g/s) and higher 1st-smoke production rate (SPR) (0.0153~0.0167 g/s) than those of virgin plate. Compared with virgin Pinus rigida plate, the specimens treated with the bis-dialkylamimoalkyl phosphinic acids showed partially low combustive properties.

A Study on the Fire Risk Comparison of Building Flooring Materials by External Heat Flux (건축용 바닥재의 외부복사열에 의한 화재위험성 비교 연구)

  • Park, Youngju;Kim, Youngtak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.20-24
    • /
    • 2017
  • In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.

Combustion characteristics of rice-husk according to the change of heat flux (왕겨의 heat flux별 연소특성에 관한 연구)

  • Park Eun-young;Park Duckshin;Cho Youngmin;Park Byunghyun;Lee Cheulkyu
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1190-1195
    • /
    • 2005
  • Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. Under the ideal conditions of complete combustion, the burning of biomass produces carbon dioxide and water vapor. Since complete combustion is not achieved under any conditions of biomass burning, other carbon species, including carbon monoxide, methane, non-methane hydrocarbons and particulate carbon are produced. In this study, we analyze the combustion characteristics of rice-husk, such as heat release rate, smoke production rate, the percentage variation of CO and $CO_2$, oxygen consumption rate, and mass loss under different heat fluxes (20, 50 and 70kW). As a result, at 20kW incomplete combustion is occurred so that the percentage of CO is high in initial burning and total smoke release is higher than the others. At 50kW and 70kW, the combustion behaviors is very similar except the variation of CO percentage.

  • PDF

A Study on the Combustion Characteristics of Biomass using Cone- calorimeter (I) : the Case of Maple Leaves, Gingko Leaves, Bush, Pine Needles (콘 칼로리미터를 이용한 바이오매스의 연소특성에 관한 연구(I) - 단풍잎, 은행잎, 덤불, 솔잎에 대해서 -)

  • Park, Byung-Hyun;Park, Duck-Shin;Cho, Young-Min;Park, Eun-Young;Lee, Cheul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.459-469
    • /
    • 2005
  • In recent years, concerns have been growing globally regarding greenhouse gases. Open burning of biomass causes emission of a number of greenhouse and other gases and substances. This paper studied an analysis on the characteristics of four types of biomass using duel type cone calorimeter. Cone calorimeter is widely used for assessing combustibility of materials in Europe. As a result, we evaluated several characteristics of biomass, such as heat released rate, smoke production rate, CO, $CO_2$ production and mass loss rate, and so on. $CO_2$ is currently responsible for over $60\%$ of the enhanced greenhouse effect, and may be the most important contributor to future. $CO_2$ production for biomass in the range of $1.74\~1.99kg/kg$ is similar to previous research conducted by Bhattacharya et al. (2002a).