Browse > Article

Combustion Properties of the Quercus variabilis and Zelkova serrata Dried at Room Temperature (II)  

Chung, Yeong-Jin (Department of Fire and Disaster Prevention, Kangwon National University)
Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.4, 2010 , pp. 469-474 More about this Journal
Abstract
Wood has an essential drawback such as high combustion ability. The purpose of this paper is to examine the combustion properties of the quercus variabilis and zelkova serrata dried at room temperature. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO/$CO_2$ production and smoke obscuration. The total heat release (THR), $140.2\;MJ/m^2$ of the quercus variabilis under an external $50\;kW/m^2$ was high in comparison with THR $85.7\;MJ/m^2$ for the zelkova serrata. Furthermore, the quercus variabilis has high total smoke production (TSP), $3.50\;m^2$ compared with TSP $0.65\;m^2$ of zelkova serrata. Thease results depend on the bulk density of tested wood species. In addition, the CO/$CO_2$ production ratio of zelkova serrata and quercus variabilis was measured as 0.053, 0.043, respectively. Also, zelkova serrata showed an increase of fire-resistance attributed to char formation compared with that of quercus variabilis.
Keywords
combustion; cone calorimeter; Quercus variabilis; Zelkova serrata;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Delichatsios, B. Paroz, and A. Bhargava, Fire Safety Journal, 38, 219 (2003).   DOI   ScienceOn
2 T. R. Hull and K. T. Paul, Fire Safety Journal, 42, 340 (2007).   DOI   ScienceOn
3 W. T. Simpso, Wood Handbook-Wood as an Engineering Material, Chap.12, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsine, U.S.A. (1987).
4 Y. J. Chung and I. K. Kwon, Journal of Korean Forest Society, 99, 96 (2010).
5 M. J. Spearpoint and G. J. Quintiere, Combustion and Flame, 123, 308 (2000).   DOI   ScienceOn
6 V. Babrauskas, doi: 1002/fam. 810080206, Fire and Materials, 8, 81 (1984).   DOI   ScienceOn
7 V. Babrauskas and S. J. Grayson, Heat release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK. (1992).
8 J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
9 Y. J. Chung, Journal of Korean Forest Society, 98, 319 (2009).
10 H. J. Park and H. Kim, J. of Korean Institute of Fire Sci. & Eng., 18, 86 (2004).   과학기술학회마을
11 ISO 5660-1, Genever (2002).
12 EN 13823 (2002).
13 N. P. Cheremisinoff, Wood for energy production, Ann Arbor Science Publishers, Ann Arbor, Mich., U.S.A. (1980).
14 J. G. Quintiere, A Semi-quantitative Model for the Burning Rate of Solid Materials, NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, M.D., U.S.A. (1992).
15 M. Hirschler, Thermal decomposition and chemical composition, 239, American Chemical Society Symposium Series 797 (2001).
16 N. Boonme and J. G. Quintiere, Thirtieth Symposioum (International) on combustion, The Combustion Institute, 30, 2303 (2005).   DOI   ScienceOn
17 E. Mikkola, Fire Safety Science, Proceedings of the Third International Symposium, 547, Elsevier, Applied Science, London (1991).
18 V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
19 H. C. Tran and R. H. White, Fire and Materials, 16, 197 (1992).   DOI
20 J. B. Carle and J. L. Brown, Wood as a source of solid fuel, ed. G.S. Watt, a review, New Zealand Forest Service, Auckland. NZ. (1976).
21 F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Characterization of Polymeric Materials, Chap. 8, Academic Press, New York, U.S.A. (1981).
22 V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds S. J. Grayson, and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
23 D. A. Tillan, Wood as an energy resource, Academic Press, New York, U.S.A. (1978)
24 N. Boonmee and J. G. Quintiere, Twenty-ninth Symposium (international) on combustion, The Combustion Institute, 29, 289 (2002).
25 M. M. Hirschler, Advances in Combustion Toxicology, 2, 229 (1990).
26 F. Shafizadeh and W. F. DeGroot, Combustion characteristics of cellulosic fuels, edds F. Shafizadeh, K.V. Sarkenen and D. A. Tillman, Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, U.S.A. (1976).
27 M. J. Spearpoint, Predicting the ignition and burning rate of wood in the cone calorimeter using an intergral model, 30, NIST GCR 99-775, U.S.A. (1999).