• Title/Summary/Keyword: smoke compartment

Search Result 50, Processing Time 0.025 seconds

An Experimental Study of Fire Suppression Using a Water Mist in a Compartment (물분무를 이용한 화재제어에 관한 실험적 연구)

  • Kim, Sung-Chan;Park, Hyun-Tae;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.367-373
    • /
    • 2003
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. The fire extinguishing times are measured for various fire sources, fuel types, and different total flooding rates of water mist. Pool fire with hydrocabon fuel is successfully extinguished within a minute under the operating conditions of the water mist system. Two different regimes of the smoke layer cooling are observed, such as rapid and slow cooling processes. The regimes are divided by threshold time which is calculated with auto-correlation function. The threshold time for the initial cooling decreases with increasing water flow-rates and fire sources. These initial cooling effects play an important role in preventing the occurance of flashover fire by the initial fire suppression.

NEW TREND OF FIRE SCIENCE AND EIRE PROTECTION TECHNOLOGY

  • Sugahara, Shinichi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.19-26
    • /
    • 1997
  • Firesafety design engineerings have been mainly derived from complicated rearrangement of descriptive specifications in codes or regulations through a great number of lessons from fire disasters. In this paper, the author refers to some recent developments in the field of building fire protection. At first, the author expresses his viewpoints concerning performance-based design codes, which have been popular throughout the world as a symbol of freedom from restricted usage of building materials and components prescrived in regulation or bylaws, in spite of some conflicts between objects-oriented design method and industrial mass production. Secondly, the author introduces several innovative fire protection methods adopted for large or void spaces in building complex. Finally, the author forcasts a next development of firesafety science and technology, aimed at securing personal safety in hyperscale urban areas.

  • PDF

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.

Calculation of Fire-resisting Time and Extraction of Simple Transplants in the Event of a Building Fire (건축물 화재시 필요내화 시간 산정 및 간이식 도출)

  • Kim, Yun-Seong;Han, Ji-Woo;kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.59-60
    • /
    • 2020
  • Large fires continue to spread throughout the building, including the fire in Uijeongbu in 2015, the fire in Jecheon in 2017, and the fire in Miryang in 2018. According to the above fire case investigation, major problems were the fire resistance performance of compartment members such as fire doors, the fire spread due to damage to exterior wall openings, and smoke spread through vertical openings. However, in South Korea, only specification design is implemented for buildings that are not subject to performance design. In addition, the analysis of the fire resistance performance standards of building members in the specification design showed that fire doors were not specified in detail for 60 minutes of insulation performance and 60 minutes of fire resistance performance of E/V doors, limiting the prevention of fire spread. Therefore, the purpose of this research is to prepare measures to prevent the spread of fire by presenting simple transplants for calculating the required fire time according to the architectural design conditions for the performance design of the components of the fire room according to the purpose of use of the front of the building.

  • PDF

Analysis of Causes of Casualties in Jecheon Sports Center Fire - Focus on Structural Factors of Building and Equipment - (제천 스포츠센터 화재의 다수 사상자 발생원인 분석 - 건물과 설비의 구조적인 요인을 중심으로 -)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.86-94
    • /
    • 2018
  • A sports center fire in Jecheon caused 29 deaths and 40 injuries. This study focused only on the structural factors of the building and equipment to investigate the causes of casualties based on the fire investigation results at the sports center. The structural factors of the building and equipment were a piloti-type parking lot, lack of a fire compartment between the piloti-type parking lot and lobby, lack of an installed sprinkler system, lack of an installed fire door in the main stairs on the $1^{st}$ floor, lack of an installed fire water tank on the rooftop, an installed pocket fire door in the main entrance on the $2^{nd}$ floor, poor fire compartments in an EPS space and a pipe pit and on each floor, a leak in the joint of a drain pipe, plywood installed in the hoistway of the freight elevator and interior wall, illegal remodeling of a closed rooftop structure, which cannot discharge smoke and heat, installed styrofoam insulation in the inside of the parking lot ceiling, an installed tempered glass window, which cannot be opened in the ladies bathroom on the $2^{nd}$ floor, and a finished dryvit exterior wall.

Analysis of Fire Patterns of Flammable Liquids for Oil Flow Tests of Compartment Fires with Reduced Simulation (축소 모의된 구획 화재의 흘림 실험에 대한 인화성 액체의 화재 패턴 해석)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.43-48
    • /
    • 2014
  • The purpose of this study is to analyze the flame propagation speed, radiation range, diffusion pattern and combustion completion time of a fire by filling a divided space with single combustible substance. It was found that the flame propagation speed was the fastest (0.2 s) for kerosene and the lowest (82.1 s) for alcohol. In the case of paint thinner, it took 19.0 s for the flame to reach its peak at the fastest speed after ignition while in the case of alcohol, it took 138.6 s for the flame to reach its peak at the lowest speed. In the case of the combustion of 200 ml of flammable liquids, the combustion completion time was 79.9 s for paint thinner, which is the shortest, 135 s for gasoline, 170 s for kerosene, 231.4 s for diesel and 337.0 s for alcohol. In addition, when flammable liquids are combusted, the lower part of the flame is governed by laminar flow pattern and the upper part of the flame showed turbulence pattern. In the case of a test performed for bean oil, it could be seen that if the fire source was removed, the flame was automatically extinguished without further combustion and that white smoke was generated due to incomplete combustion.

Analysis of Fire Intensity According to the Zones Classification in Traditional Market Stores (전통재래시장 상가간의 구역 구분에 따른 화재강도 분석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.154-160
    • /
    • 2020
  • This study analyzed the fire intensity according to the zones classification between traditional market stores using FDS software. Modeling was conducted for the Seomoon traditional market district 4 at Daegu, which places combustibles, such as textiles and clothing near the passageway. The first ignition point assumed a short circuit fire situation at the fourth store combustible. The analysis was conducted under similar conditions as the fire situation in 2016. When there was no section wall, the fire spread rapidly through radiation in all directions from the fire-origin point. After 600 seconds, the mall was burnt to the ground. When section walls were present, however, the fire could be restricted inside the compartment. The first intensity of the two analysis conditions was predicted from the total heat energy from 200 seconds (X1) to 600 seconds (X2), where the heat generation rate began to increase rapidly. As a result of installing section walls near the fire point, heat energy generation of approximately 11.12 MW (55.68 %) was delayed. Further analysis of smoke control, according to the section wall arrangement and re-installation facilities, will be needed to study the characteristics of fire in traditional markets comprehensively.

Application for Fire Protection Regulation based on Risk-Informed and Performance-Based Analysis (위험도 및 성능기반 분석방법에 의한 원전 화재방호규정 적용 방안)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.65-70
    • /
    • 2006
  • From the beginning of the construction stage, the fire protection regulation for the nuclear power plants conforms to the design requirements for the acquisition of the license permit. This regulation is based on the plant status of the normal operation, but it is not enough to be used as an application standard for fire protection at the transient mode of the plant and the outage time for refueling as well as for the plant decommissioning. While the advanced fire protection requirement that has been developed in America recently suggests the performance-based requirement and management rule applicable to the overall life time of the plant, it simply represents the conceptual application. It means that it can not be treated as appropriate standards because it does not deal with the qualitative and quantitative approach in specific ways. By the way, with the use of the performance-based fire risk analysis, the dynamic behavior of the heat and smoke at the fire compartment of the nuclear power plants can be analyzed and the thermal effect to the safety-related equipment and cables can be evaluated as well. At this paper, it suggests the ways to change the applicable fire protection regulations and the required evaluation items for the fire risk resulted from the plant configuration change with an intent to introduce the state-of-the-art quantitative fire risk analysis technology at the domestic nuclear power plants.

A Numerical Analysis Study on the Influence of the Fire Protection System on Evacuation Safety in Apartment Houses (공동주택 건축물 내 화재방호시스템이 피난안전성에 미치는 영향에 대한 수치해석적 연구)

  • Kim, Hak Kyung;Choi, Doo Chan;Lee, Doo Hee;Hwang, Hyun Soo;Kim, Hee Moon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.38-50
    • /
    • 2022
  • Purpose: The goal of this research is to create a numerical analytic database that may assist fire prevention managers and building officials in prioritizing items that need to be addressed in order to improve evacuation safety performance while working within a constrained budget and time frame. Method: It was carried out utilizing the CFD Tool, a quantitative evaluation approach, to assess evacuation safety. One direct staircase-type apartment houses and one corridor-type apartment were chosen to make it. Result: In the fire compartment category, Apartment A's evacuation time was around 130 percent longer than that of sprinkler facilities. Conclusion: Fire prevention managers and building officials feel that starting with a single level and implementing "dwelling unit separations" will increase evacuation safety, and that maintaining fire compartments and sprinkler systems at all times will be effective. Because of the limited characteristics of smoke propagation in corridor-type apartments compared to direct staircase-type flats, it is thought that fire extinguishing equipment should be addressed.