• 제목/요약/키워드: smartphone sensor data

검색결과 143건 처리시간 0.022초

The design of the Fall detection algorithm using the smartphone accelerometer sensor

  • Lee, Daepyo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.54-62
    • /
    • 2017
  • Currently, falling to industrial field workers is causing serious injuries. Therefore, many researchers are actively studying the fall by using acceleration sensor, gyro sensor, pressure sensor and image information.Also, as the spread of smartphones becomes common, techniques for determining the fall by using an acceleration sensor built in a smartphone are being studied. The proposed method has complexity due to fusion of various sensor data and it is still insufficient to develop practical application. Therefore, in this paper, we use acceleration sensor module built in smartphone to collect acceleration data, propose a simple falling algorithm based on accelerometer sensor data after normalization and preprocessing, and implement an Android based app.

Creating Covert Channel by Harnessing Shapley Values from Smartphone Sensor Data

  • Ho, Jun-Won
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.10-16
    • /
    • 2021
  • In this paper, we devise a Shapley-value-based covert channel in smartphones. More specifically, unlike ordinary use of Shapley value in cooperative game, we make use of a series of Shapley values, which are computed from sensor data collected from smartphones, in order to create a covert channel between encoding smartphone and decoding smartphone. To the best of our knowledge, we are the first to contrive covert channel based on Shapley values. We evaluate the encoding process of our proposed covert channel through simulation and present our evaluation results.

Weighted Adaptive Opportunistic Scheduling Framework for Smartphone Sensor Data Collection in IoT

  • M, Thejaswini;Choi, Bong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5805-5825
    • /
    • 2019
  • Smartphones are important platforms because of their sophisticated computation, communication, and sensing capabilities, which enable a variety of applications in the Internet of Things (IoT) systems. Moreover, advancements in hardware have enabled sensors on smartphones such as environmental and chemical sensors that make sensor data collection readily accessible for a wide range of applications. However, dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users that vary throughout the day, which greatly affects the efficacy of sensor data collection. Therefore, it is necessary to consider phone users mobility patterns to design data collection schedules that can reduce the loss of sensor data. In this paper, we propose a mobility-based weighted adaptive opportunistic scheduling framework that can adaptively adjust to the dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users and provide prioritized scheduling based on various application scenarios, such as velocity, region of interest, and sensor type. The performance of the proposed framework is compared with other scheduling frameworks in various heterogeneous smartphone user mobility scenarios. Simulation results show that the proposed scheduling improves the transmission rate by 8 percent and can also improve the collection of higher-priority sensor data compared with other scheduling approaches.

A Study on User Authentication with Smartphone Accelerometer Sensor (스마트폰 가속도 센서를 이용한 사용자 인증 방법 연구)

  • Seo, Jun-seok;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제25권6호
    • /
    • pp.1477-1484
    • /
    • 2015
  • With the growth of financial industry with smartphone, interest on user authentication using smartphone has been arisen in these days. There are various type of biometric user authentication techniques, but gait recognition using accelerometer sensor in smartphone does not seem to develop remarkably. This paper suggests the method of user authentication using accelerometer sensor embedded in smartphone. Specifically, calibrate the sensor data from smartphone with 3D-transformation, extract features from transformed data and do principle component analysis, and learn model with using gaussian mixture model. Next, authenticate user data with confidence interval of GMM model. As result, proposed method is capable of user authentication with accelerometer sensor on smartphone as a high degree of accuracy(about 96%) even in the situation that environment control and limitation are minimum on the research.

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • 제17권12호
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

Detecting user status from smartphone sensor data

  • Nguyen, Thu-Trang;Nguyen, Thi-Hau;Nguyen, Ha-Nam;Nguyen, Duc-Nhan;Choi, GyooSeok
    • International Journal of Advanced Culture Technology
    • /
    • 제4권1호
    • /
    • pp.28-30
    • /
    • 2016
  • Due to the high increment in usage and built-in advanced technology of smartphones, human activity recognition relying on smartphone sensor data has become a focused research area. In order to reduce noise of collected data, most of previous studies assume that smartphones are fixed at certain positions. This strategy is impractical for real life applications. To overcome this issue, we here investigate a framework that allows detecting the status of a traveller as idle or moving regardless the position and the direction of smartphones. The application of our work is to estimate the total energy consumption of a traveller during a trip. A number of experiments have been carried out to show the effectiveness of our framework when travellers are not only walking but also using primitive vehicles like motorbikes.

A Study on the Fingerprint Location Determination using Smartphone Geomagnetic Data For Emergency Evacuation (지자기데이터를 이용한 응급대피용 핑거프린트 위치 추정에 관한 연구)

  • Jin, Hye-Myeong;Jang, Jung-Hwan;Jang, Jing-Lun;Jho, Yong-chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • 제21권4호
    • /
    • pp.59-65
    • /
    • 2019
  • The Location Based Service is growing rapidly nowadays due to the universalization of the use for smartphone, therefore the location determination technology has been placed in an important position. This study suggests a method that can provide the estimate of users' location by using PDR method and smartphone geomagnetic sensor data. This method assists the measure of enhancing the accuracy of indoor localization. Moreover, it is to study ways to provide the exact indoor layout for evacuating the workers in emergency such as fires and natural disasters.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제35권5호
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Development of a Photoplethysmographic method using a CMOS image sensor for Smartphone (스마트폰의 CMOS 영상센서를 이용한 광용적맥파 측정방법 개발)

  • Kim, Ho Chul;Jung, Wonsik;Lee, Kwonhee;Nam, Ki Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권6호
    • /
    • pp.4021-4030
    • /
    • 2015
  • Pulse wave is the physiological responses through the autonomic nervous system such as ECG. It is relatively convenient because it can measure the signal just by applying a sensor on a finger. So, it can be usefully employed in the field of U-Healthcare. The objects of this study are acquiring the PPG (Photoplethysmography) one of the way of measuring the pulse waves in non-invasive way using the CMOS image sensor on a smartphone camera, developing the portable system judging stressful or not, and confirming the applicability in the field of u-Healthcare. PPG was acquired by using image data from smartphone camera without separate sensors and analyzed. Also, with that image signal data, HRV (Heart Rate Variability) and stress index were offered users by just using smartphone without separate host equipment. In addition, the reliability and accuracy of acquired data were improved by developing additional hardware device. From these experiments, we can confirm that measuring heart rate through the PPG, and the stress index for analysis the stress degree using the image of a smartphone camera are possible. In this study, we used a smartphone camera, not commercialized product or standardized sensor, so it has low resolution than those of using commercialized external sensor. However, despite this disadvantage, it can be usefully employed as the u-Healthcare device because it can obtain the promising data by developing additional external device for improvement reliability of result and optimization algorithm.

User's static and dynamic posture determination method using smartphone acceleration sensor

  • Lee, Seok-Woo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.63-73
    • /
    • 2017
  • In this paper, we propose algorithm for determining the static and dynamic posture using the acceleration sensor of smartphone. The measured acceleration values are then analyzed according to a preprocessing to the respective axis (X, Y, Z) and posture (standing, sitting, lying) presents static posture determination criterion. The proposed static posture determination condition is used for static posture determination and dynamic posture determination. The dynamic posture is determined by using regression linear equations. In addition, transition state can be grasped by SVM change in dynamic posture determination. Experimental results are presented using data and app. Experiments were performed using data collected from 10 adults.