DOI QR코드

DOI QR Code

Development of a Photoplethysmographic method using a CMOS image sensor for Smartphone

스마트폰의 CMOS 영상센서를 이용한 광용적맥파 측정방법 개발

  • Kim, Ho Chul (Department of Radiological Science, College of Health Science, Eulgi University) ;
  • Jung, Wonsik (Samsung Electronics) ;
  • Lee, Kwonhee (Graduate Program in Bio-medical Science, Korea University) ;
  • Nam, Ki Chang (Department of Medical Engineering, Dongguk University College of Medicine)
  • 김호철 (을지대학교 보건과학대학 방사선학과) ;
  • 정원식 (삼성전자) ;
  • 이권희 (고려대학교 의용과학협동과정) ;
  • 남기창 (동국대학교 의과대학 의공학교실)
  • Received : 2015.04.06
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

Pulse wave is the physiological responses through the autonomic nervous system such as ECG. It is relatively convenient because it can measure the signal just by applying a sensor on a finger. So, it can be usefully employed in the field of U-Healthcare. The objects of this study are acquiring the PPG (Photoplethysmography) one of the way of measuring the pulse waves in non-invasive way using the CMOS image sensor on a smartphone camera, developing the portable system judging stressful or not, and confirming the applicability in the field of u-Healthcare. PPG was acquired by using image data from smartphone camera without separate sensors and analyzed. Also, with that image signal data, HRV (Heart Rate Variability) and stress index were offered users by just using smartphone without separate host equipment. In addition, the reliability and accuracy of acquired data were improved by developing additional hardware device. From these experiments, we can confirm that measuring heart rate through the PPG, and the stress index for analysis the stress degree using the image of a smartphone camera are possible. In this study, we used a smartphone camera, not commercialized product or standardized sensor, so it has low resolution than those of using commercialized external sensor. However, despite this disadvantage, it can be usefully employed as the u-Healthcare device because it can obtain the promising data by developing additional external device for improvement reliability of result and optimization algorithm.

맥파는 심전도와 같이 자율신경계를 통해 생리적 반응을 측정하는 신호이지만, 손가락에 센서 하나만 부착시키면 되기 때문에 상대적으로 신호의 측정이 간편하다는 장점을 가지고 있어 u-Healthcare 분야에서의 활용이 용이하다. 따라서 본 연구의 목적은 스마트폰 카메라의 CMOS 영상 센서를 활용하여 맥파를 비침습적으로 측정하는 방법 중의 하나인 광용적맥파를 획득하고 이로부터 스트레스 여부를 판단하는 휴대형 시스템을 개발하여 u-Healthcare 분야에서의 활용 가능성을 확인하는 것이다. 이를 위해 광용적맥파를 별도의 센서에 의한 측정이 아닌 스마트폰 카메라에서 획득되는 영상 데이터를 활용하여 광용적맥파를 획득한 후 분석하였다. 또한 확보된 광용적맥파 영상신호 데이터를 이용하여 심박변이도와 스트레스 지수를 별도의 호스트 장비 없이 스마트폰만을 이용해 사용자에게 제공 하였다. 또한 부가적으로 스마트폰에 부착가능한 별도의 하드웨어 디바이스를 개발함으로써 획득된 데이터의 신뢰도 및 정확성을 향상시켰다. 실험결과를 통해 스마트폰의 카메라 영상을 활용하여 광용적맥파 신호를 통한 심박수 측정과 스트레스의 정도를 분석하기 위한 스트레스 지수 추출이 가능함을 확인할 수 있었다. 본 연구에서는 상용화된 제품 또는 정형화된 센서가 아닌 스마트폰의 카메라를 이용하기 때문에 상용화된 외부 센서에 의한 광용적맥파 신호보다는 해상도가 떨어지는 단점이 있음에도 불구하고 결과 데이터의 신뢰도 향상을 위한 별도의 추가외부 장치 개발 및 여러 가지 최적화 알고리즘을 통해 신뢰성 있는 데이터를 확보할 수 있어 u-Healthcare 장비로써의 활용 가능성을 확인할 수 있었다.

Keywords

References

  1. K. Hung, Y.T. Zhang, B Tai, B., "Wearable medical devices for tele-home healthcare", Engineering in Medicine and Biology Society, Vol. 2, pp.5384-5387, 2004.
  2. B.C. Choi, D.K. Jung, D.U. Jeong, J.H. Ro, G.R.Jeon, "Measurment of Cardiac Pulse Transit Time using Photoplethysmography Sensor." Journal of Korean Sensor Society Vol. 13, No. 5 pp. 383-391, 2004.
  3. M.S. Gazzaniga, R.B. Ivry, G.R. Mangun, Gognitive neuroscience: The biology of the mind. 2nd ed. New York: Norton & Company; 2002.
  4. A.P. Owens, A.S. David, D.A. Low, C.J. Mathis, M. Sierra-Siegert, "Abnormal cardiovascular sympathetic and parasympathetic responses to physical and emotional stimuli in depersonalization disorder", Front Neurosci, Vol. 9, Articl 89. 2015. DOI: http://dx.doi.org/10.3389/fnins.2015.00089
  5. F. Chouchou, M Desseilles, "Heart rate variability: a tool to explore the sleeping brain?", Front Neurosci, Vol. 8, Articl 402. 2014.
  6. R. McCraty, M. Atkinson, W.A. Tiller, G. Rein, A.D. Watkins, "The effects of emotions on short-term power spectrum analysis of heart rate variability", The American Journal of Cardiology, Vol.76, pp.1089-1093, 1995. DOI: http://dx.doi.org/10.1016/S0002-9149(99)80309-9
  7. G.E. Prinsloo, H.G. Rauch, W.E. Derman, "A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine", Phys Sportsmed Vol. 42, No. 2, pp. 88-99, 2014. DOI: http://dx.doi.org/10.3810/psm.2014.05.2061
  8. J.G. Webster, Design of Pulse Oximeters, IOP Publishing, 1997. DOI: http://dx.doi.org/10.1887/0750304677
  9. J.F. Kelleher, ""Pulse oximetry,"" Journal of Clinical Monitoring and Computing, Vol. 5, No. 1, pp. 37-62, 1998. DOI: http://dx.doi.org/10.1007/BF01618369
  10. N. Selvaraj, A Jaryal, J. Santhosh, K.K. Deepak, S. Anand, "Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography", J Med Eng Technol, Vol. 32, No. 6, pp. 479-484, 2008. DOI: http://dx.doi.org/10.1080/03091900701781317
  11. K.H. Kim, S.K. Yoo, B.S. Kim, N.H. Kim, "The Motion Artifact Reduction in Photoplethysmography Using Independent Component Analysis", The Transactions of the Korean Institute of Electrical Engineers, Vol. 52, No. 10, pp. 598-605, 2003.
  12. H. Y. Han, Y. J. Lee, J. K. Kim, J. Kim, "Development of a Reflected Type Photoplethysmograph (PPG) Sensor with Motion Artifacts Reduction", Journal of the Korean Society for Precision Engineering Vol. 26, No. 12, pp. 146-153 2009
  13. A.A. Alian, K.H. Shelley, "Photoplethysmography", Best Pract Res Clin Anaesthesiol, Vol. 28, No. 4, pp. 395-406, 2014. DOI: http://dx.doi.org/10.1016/j.bpa.2014.08.006
  14. G.R. Jeon, D.K. Jung, G.R. Kim, B.J. Shin, "The Development of Integrated Sensor System for Measuring Simultaneously ECG, PPG and PPW", Journal of the Korea Academia-Industrial cooperation Society, Vol. 10, No. 5, pp. 992-999, 2009. DOI: http://dx.doi.org/10.5762/KAIS.2009.10.5.992
  15. L. A. Bortolotto, J. Blacher, T. Kondo, K. Takazawa, M.E. Safar, "Assessment of Vascular Aging and Atherosclerosis in Hypertensive Subjects: Second Derivative of Photoplethysmogram Versus Pulse Wave Velocity". Am J Hypertension, Vol. 13, pp. 165-171, 2000. DOI: http://dx.doi.org/10.1016/S0895-7061(99)00192-2
  16. J. M. Song, "Design and Implementation of a bio-signal analysis system using a PPG sensor", Chung-buk University Graduate School, Maser's Thesis, 2011.
  17. W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, T. Togawa, "Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration", Medical & Biological Engineering & Computing, Vol. 38, No. 5, pp. 569-574, 2000. DOI: http://dx.doi.org/10.1007/BF02345755
  18. L. Nilsson, A. Johansson, S. Kalman, "Respiration can be monitored by photoplethysmography with high sensitivity and specificity regardless of anaesthesia and ventilatory mode", Acta Anaesthesiol Scand, Vol. 49, No. 8, pp. 1157-1162, 2005. DOI: http://dx.doi.org/10.1111/j.1399-6576.2005.00721.x
  19. J.E. Lee, S.K. Yoo, "Feature Selecting Algorithm Development Based on Physiological Signals for Negative Emotion Recognition", Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 8, pp. 3925-3932, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.8.3925
  20. S. M. Ahn, "Emotion recognition technology and personalized real-time emotion sharing technology in a mobile environment", Sang-myung University Graduate School, Master's Thesis, 2012.
  21. T.F. Quatieri, Discrete-time Speech Signal Processing, Prentice Hall, 2002.