• 제목/요약/키워드: smart-learning

검색결과 1,825건 처리시간 0.027초

소스코드의 취약점 이력 학습을 이용한 소프트웨어 보안 취약점 분석 시스템 (A Software Vulnerability Analysis System using Learning for Source Code Weakness History)

  • 이광형;박재표
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.46-52
    • /
    • 2017
  • 최근 ICT 및 IoT 제품의 활용 분야가 다양화 되면서 오픈소스 소프트웨어의 활용 분야가 컴퓨터, 스마트폰, IoT 디바이스 등 다양한 기기와 환경에서 활용되고 있다. 이처럼 오픈소스 소프트웨어의 활용분야가 다양해짐에 따라 오픈소스의 보안 취약점을 악용하는 불법적인 사례가 지속적으로 증가하고 있다. 이에 따라 다양한 시큐어 코딩을 위한 도구나 프로그램이 출시되고 활용되고 있지만 여전히 많은 취약점들이 발생하고 있다. 본 논문에서는 안전한 오픈 소스 소프트웨어 개발을 위해 오픈 소스의 취약점 분석 결과에 의한 이력과 패턴을 지속적으로 학습하여 신규 취약점 분석에 활용할 수 있는 방법을 제안한다. 본 연구를통해 취약점 이력 및 패턴 학습기반의 취약점 분석 시스템을 설계하였으며, 프로토타입으로 구현하여 실험을 통해 시스템의 성능을 평가하였다. 5개의 취약점 항목에 대해 평균 취약점 검출 시간은 최대 약 1.61sec가 단축되었으며, 평균 검출 정확도는 약 44%point가 향상된 것을 평가결과에서 확인할 수 있었다. 본 논문의 내용 및 결과는 소프트웨어 취약점 연구 분야에 대한 발전과 소프트웨어 개발자들의 취약점 분석을 통한 시큐어 코딩에 도움이 될 것을 기대한다.

딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발 (Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels)

  • 이규범;신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1161-1175
    • /
    • 2018
  • 도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.

도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘 (Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권3호
    • /
    • pp.95-105
    • /
    • 2019
  • 최근 들어 도로 노면 파손의 위치 정보를 수집하기 위한 영상 처리 기술에 대한 연구가 활발히 진행되고 있다. 대표적으로 차량에 탑재가 가능한 스마트폰이나 블랙박스를 통해 영상을 얻고 이를 영상처리 알고리즘을 사용하여 인식하는 기술이 주로 사용된다. GPS 모듈과 연계하여 실제 파손 위치를 파악할 때 가장 중요한 기술은 영상 처리 알고리즘인데, 근래에는 대부분 인공지능을 통한 알고리즘이 연구 주제로 주목받고 있다. 이와 같은 맥락에서 본 연구에서도 영역 기반의 합성곱 방식 계열의 객체인식 (Object Detection) 방법을 사용한 인공지능 영상 처리 알고리즘에 대하여 논의하고자 한다. 도로 노면 파손 객체 인식 성능을 향상시키기 위하여 도로 노면 파손 영상 600여 장과 일반적인 도로 주행 영상 1500여 장으로 학습 데이터베이스를 구성하였다. 또한 배경 객체 인식 방법을 적용한 지도 학습을 수행하여 도로 노면 파손의 오탐을 감소시켰다. 그 결과 동일한 테스트용 데이터베이스를 통해 알고리즘의 인식 성능을 mAP 평균값 기준 9.44%만큼 향상시킨 새로운 방법을 소개하고자 한다.

머신러닝을 이용한 시각장애인 도로 횡단 보조 임베디드 시스템 개발 (Development of Street Crossing Assistive Embedded System for the Visually-Impaired Using Machine Learning Algorithm)

  • 오선택;정기동;김호민;김영근
    • 한국HCI학회논문지
    • /
    • 제14권2호
    • /
    • pp.41-47
    • /
    • 2019
  • 본 연구는 시각장애인들이 도로를 안전하게 횡단할 수 있도록 신호등 인식 및 음성안내를 제공해주는 임베디드 시스템의 설계를 제안한다. 시각장애인에게 독립보행은 큰 어려움으로 작용하고 있으며, 독립보행의 제한은 그들의 삶의 질을 저하시키는 요인으로 작용하고 있다. 도로횡단에서의 신호등 인식과 도로 및 차로의 구분 불가는 시각장애인의 독립보행을 방해하는 가장 큰 요인 중 하나이다. 본 연구에서 제안하는 스마트기기는 안경에 달린 초소형 카메라로 GPU 보드에 탑재된 머신러닝 알고리즘을 이용하여 보행자 신호등을 검출 및 인식하며, 음성 안내를 유저에게 전달해준다. 휴대성을 위하여, 기기는 충분한 배터리 수명과 함께 소형 및 가볍게 디자인되었다. 또한, 안경 다리에는 외부 소리를 막지 않으면서 음성 안내를 전달해주는 골전도 스피커가 부착되어 있다. 본 연구에서 제안하는 스마트기기는 실험을 통하여 보행자 신호의 초록 신호에 대하여 87.0%의 검출율(recall)과 100%의 정확도(precision)를 가지며, 빨간 신호에 대하여, 94.4%의 검출율(recall) 값과 97.1%의 정확도(precision)를 가지는 것으로 유효성을 확인하였다.

중학교 '진화' 단원 디지털 교재 개발 및 적용 (Development and Instructional Effect of Digital Textbook for the Biological Evolution Unit in Middle School Science)

  • 정유나;차희영
    • 한국과학교육학회지
    • /
    • 제39권1호
    • /
    • pp.89-99
    • /
    • 2019
  • 이 연구는 중학교 '진화' 단원을 디지털 교재로 개발하여 학생들의 진화 개념 형성과 학습에 대한 흥미에 효과가 있는지 알아보고자 하였다. 오랜 시간에 의한 생물의 변화를 설명하는 생물 진화에 대한 설명은, 많은 내용을 다양하게 제공할 수 있고, 영상을 제작하고 편집할 수 있으며, 어려운 개념을 재미있게 제공할 수 있는 디지털 교과서가 서책형 교과서를 통해 이루어질 때 효과적일 수 있다. 연구를 위해 먼저 5E 순환학습 모형을 기반으로 전자책 저작 도구인 iBooks Author를 활용하여, 4차시로 구성된 진화수업을 만들었다. 개발한 디지털 교재의 효과 검증을 위해 서책형 수업과 디지털 교과서를 활용한 수업을 비교했다. 서책형 교재를 통한 수업과 디지털 교재를 활용한 수업 모두 진화 개념 형성에 유의미한 효과를 보였으나 생명 과학 흥미도와 진화 흥미도는 디지털 교재 수업 집단에서만 유의미하게 증가하였다. 또한 학생을 유형별로 나누어 디지털 교과서 효과를 확인한 결과 디지털 리터러시에 따라 스마트 기기에 친숙한 그룹이 수업에 더 적극적이었고 흥미가 높았다. 개발된 디지털 교재의 만족도 역시 디지털 리터러시가 높은 그룹에서 긍정적인 점수를 나타냈다. 이 연구 결과는 진화 영역 디지털 교재 개발은 어려운 진화 개념을 쉽고 재미있게 접근할 수 있는 수업 도구가 될 수 있음을 알려준다.

감성분석을 이용한 뉴스정보와 딥러닝 기반의 암호화폐 수익률 변동 예측을 위한 통합모형 (An Integrated Model for Predicting Changes in Cryptocurrency Return Based on News Sentiment Analysis and Deep Learning)

  • 김은미
    • 지식경영연구
    • /
    • 제22권2호
    • /
    • pp.19-32
    • /
    • 2021
  • 암호화폐 중 대표적인 비트코인은 전 세계적으로 많은 관심을 받고 있으며 비트코인의 가격은 등·하락을 거듭하며 높은 변동성을 보이고 있다. 높은 변동성은 투자자들에게 위험 요인으로 작용하며 무분별한 투자로 인한 사회적 문제를 야기시킨다. 비트코인의 가격은 세계의 환경변화에 영향을 받으며 신속하게 반응하기 때문에 실시간으로 다양한 정보를 제공하는 뉴스 정보는 비트코인 가격의 변동성 예측에 유용한 정보를 제공한다. 즉, 긍정적인 뉴스는 투자심리를 자극할 것이며 반대로 부정적인 뉴스는 투자심리를 위축시킬 것이다. 따라서 본 연구에서는 비트코인의 수익률 변동을 예측하기 위해 뉴스의 감성정보와 딥러닝을 적용하였다. 로짓, 인공신경망, SVM, LSTM을 적용하여 단일 예측모형을 구축하였으며 예측성과를 향상시키기 위한 방법으로 통합모형을 제안하였다. 과거의 가격정보를 기반으로 구축한 예측모형과 뉴스의 감성정보를 반영한 예측모형의 성과를 비교한 결과 뉴스의 감성정보를 반영한 예측모형의 성과가 우수하게 나타났으며 통합모형의 성과가 가장 우수한 것으로 나타났다. 본 연구는 비트코인 수익률 변동에 대한 예측모형을 통해 무분별한 투자를 예방하고 투자자들의 현명한 투자가 이루어질 수 있도록 유용한 정보를 제공할 수 있을 것이다.

실내 환경에서 Chirp Emission과 Echo Signal을 이용한 심층신경망 기반 객체 감지 기법 (DECODE: A Novel Method of DEep CNN-based Object DEtection using Chirps Emission and Echo Signals in Indoor Environment)

  • 남현수;정종필
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.59-66
    • /
    • 2021
  • 인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.

딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구 (Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program)

  • 신윤지;이현주;김준희;권다영;이선애;추윤진;박지혜;정자현;이형석;김준호
    • 문화기술의 융합
    • /
    • 제7권3호
    • /
    • pp.577-582
    • /
    • 2021
  • 최근 AR, VR 및 스마트 디바이스 기술의 발전에 따라 피트니스 산업에서도 비대면 환경을 기반으로 한 서비스 수요가 증가하고 있다. 비대면 온라인 홈트레이닝 서비스는 기존의 오프라인 서비스에 비해 시간과 장소의 제약이 없다는 장점이 있으나 운동 기구의 부재 및 사용자의 정확한 운동 자세 유지여부, 운동량의 측정이 어려운 단점이 존재한다. 본 연구에서는 이러한 단점을 보완할 수 있는 표준 운동 프로그램을 개발하고 딥러닝 기반 신체 자세 추정 영상처리를 통하여 새로운 비대면 홈트레이닝 어플리케이션 알고리즘을 제안한다. 본 연구의 알고리즘 기반 어플리케이션을 활용한다면 표준 운동 프로그램 영상의 트레이너를 사용자가 직접 보고 따라하면서 사용자 스스로 자세를 교정하며 정확한 운동이 가능하다. 나아가 본 연구의 알고리즘을 용도에 맞게 커스터마이징 한다면 공연, 영화, 동아리 활동, 컨퍼런스 분야로의 적용도 가능할 것이다.

머신러닝 기반 금속외관 결함 검출 비교 분석 (Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection)

  • 이세훈;강성환;신요섭;최오규;김시종;강재모
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.834-841
    • /
    • 2022
  • 최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.21-31
    • /
    • 2021
  • 최근 코로나(Covid-19)의 영향으로 스마트 헬스케어 관련 산업과 비대면 방식의 원격 진단을 통한 질환 분류 예측 연구의 필요성이 증가하고 있다. 일반적으로 호흡기 질환의 진단은 비용이 많이 들고 숙련된 의료 전문가를 필요로 하여 현실적으로 조기 진단 및 모니터링에 한계가 있다. 따라서, 간단하고 편리한 청진기로부터 수집된 호흡음을 딥러닝 기반 모델을 활용하여 높은 정확도로 분류하고 조기 진단이 필요하다. 본 연구에서는 청진을 통해 수집된 폐음 데이터를 이용하여 이상 호흡음 분류모델을 제안한다. 데이터 전처리로는 대역통과필터(BandPassFilter)방법론을 적용하고 로그 멜 스펙트로그램(Log-Mel Spectrogram)과 Mel Frequency Cepstral Coefficient(MFCC)을 이용하여 폐음의 특징적인 정보를 추출하였다. 추출된 폐음의 특징에 대해서 효과적으로 분류할 수 있는 병렬 합성곱 신경망 네트워크(Parallel CNN network)모델을 제안하고 다양한 머신러닝 분류기(Classifiers)와 결합한 스태킹 앙상블(Stacking Ensemble) 방법론을 이용하여 이상 호흡음을 높은 정확도로 분류하였다. 본 논문에서 제안한 방법은 96.9%의 정확도로 이상 호흡음을 분류하였으며, 기본모델의 결과 대비 정확도가 약 6.1% 향상되었다.