최근 ICT 및 IoT 제품의 활용 분야가 다양화 되면서 오픈소스 소프트웨어의 활용 분야가 컴퓨터, 스마트폰, IoT 디바이스 등 다양한 기기와 환경에서 활용되고 있다. 이처럼 오픈소스 소프트웨어의 활용분야가 다양해짐에 따라 오픈소스의 보안 취약점을 악용하는 불법적인 사례가 지속적으로 증가하고 있다. 이에 따라 다양한 시큐어 코딩을 위한 도구나 프로그램이 출시되고 활용되고 있지만 여전히 많은 취약점들이 발생하고 있다. 본 논문에서는 안전한 오픈 소스 소프트웨어 개발을 위해 오픈 소스의 취약점 분석 결과에 의한 이력과 패턴을 지속적으로 학습하여 신규 취약점 분석에 활용할 수 있는 방법을 제안한다. 본 연구를통해 취약점 이력 및 패턴 학습기반의 취약점 분석 시스템을 설계하였으며, 프로토타입으로 구현하여 실험을 통해 시스템의 성능을 평가하였다. 5개의 취약점 항목에 대해 평균 취약점 검출 시간은 최대 약 1.61sec가 단축되었으며, 평균 검출 정확도는 약 44%point가 향상된 것을 평가결과에서 확인할 수 있었다. 본 논문의 내용 및 결과는 소프트웨어 취약점 연구 분야에 대한 발전과 소프트웨어 개발자들의 취약점 분석을 통한 시큐어 코딩에 도움이 될 것을 기대한다.
도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.
최근 들어 도로 노면 파손의 위치 정보를 수집하기 위한 영상 처리 기술에 대한 연구가 활발히 진행되고 있다. 대표적으로 차량에 탑재가 가능한 스마트폰이나 블랙박스를 통해 영상을 얻고 이를 영상처리 알고리즘을 사용하여 인식하는 기술이 주로 사용된다. GPS 모듈과 연계하여 실제 파손 위치를 파악할 때 가장 중요한 기술은 영상 처리 알고리즘인데, 근래에는 대부분 인공지능을 통한 알고리즘이 연구 주제로 주목받고 있다. 이와 같은 맥락에서 본 연구에서도 영역 기반의 합성곱 방식 계열의 객체인식 (Object Detection) 방법을 사용한 인공지능 영상 처리 알고리즘에 대하여 논의하고자 한다. 도로 노면 파손 객체 인식 성능을 향상시키기 위하여 도로 노면 파손 영상 600여 장과 일반적인 도로 주행 영상 1500여 장으로 학습 데이터베이스를 구성하였다. 또한 배경 객체 인식 방법을 적용한 지도 학습을 수행하여 도로 노면 파손의 오탐을 감소시켰다. 그 결과 동일한 테스트용 데이터베이스를 통해 알고리즘의 인식 성능을 mAP 평균값 기준 9.44%만큼 향상시킨 새로운 방법을 소개하고자 한다.
본 연구는 시각장애인들이 도로를 안전하게 횡단할 수 있도록 신호등 인식 및 음성안내를 제공해주는 임베디드 시스템의 설계를 제안한다. 시각장애인에게 독립보행은 큰 어려움으로 작용하고 있으며, 독립보행의 제한은 그들의 삶의 질을 저하시키는 요인으로 작용하고 있다. 도로횡단에서의 신호등 인식과 도로 및 차로의 구분 불가는 시각장애인의 독립보행을 방해하는 가장 큰 요인 중 하나이다. 본 연구에서 제안하는 스마트기기는 안경에 달린 초소형 카메라로 GPU 보드에 탑재된 머신러닝 알고리즘을 이용하여 보행자 신호등을 검출 및 인식하며, 음성 안내를 유저에게 전달해준다. 휴대성을 위하여, 기기는 충분한 배터리 수명과 함께 소형 및 가볍게 디자인되었다. 또한, 안경 다리에는 외부 소리를 막지 않으면서 음성 안내를 전달해주는 골전도 스피커가 부착되어 있다. 본 연구에서 제안하는 스마트기기는 실험을 통하여 보행자 신호의 초록 신호에 대하여 87.0%의 검출율(recall)과 100%의 정확도(precision)를 가지며, 빨간 신호에 대하여, 94.4%의 검출율(recall) 값과 97.1%의 정확도(precision)를 가지는 것으로 유효성을 확인하였다.
이 연구는 중학교 '진화' 단원을 디지털 교재로 개발하여 학생들의 진화 개념 형성과 학습에 대한 흥미에 효과가 있는지 알아보고자 하였다. 오랜 시간에 의한 생물의 변화를 설명하는 생물 진화에 대한 설명은, 많은 내용을 다양하게 제공할 수 있고, 영상을 제작하고 편집할 수 있으며, 어려운 개념을 재미있게 제공할 수 있는 디지털 교과서가 서책형 교과서를 통해 이루어질 때 효과적일 수 있다. 연구를 위해 먼저 5E 순환학습 모형을 기반으로 전자책 저작 도구인 iBooks Author를 활용하여, 4차시로 구성된 진화수업을 만들었다. 개발한 디지털 교재의 효과 검증을 위해 서책형 수업과 디지털 교과서를 활용한 수업을 비교했다. 서책형 교재를 통한 수업과 디지털 교재를 활용한 수업 모두 진화 개념 형성에 유의미한 효과를 보였으나 생명 과학 흥미도와 진화 흥미도는 디지털 교재 수업 집단에서만 유의미하게 증가하였다. 또한 학생을 유형별로 나누어 디지털 교과서 효과를 확인한 결과 디지털 리터러시에 따라 스마트 기기에 친숙한 그룹이 수업에 더 적극적이었고 흥미가 높았다. 개발된 디지털 교재의 만족도 역시 디지털 리터러시가 높은 그룹에서 긍정적인 점수를 나타냈다. 이 연구 결과는 진화 영역 디지털 교재 개발은 어려운 진화 개념을 쉽고 재미있게 접근할 수 있는 수업 도구가 될 수 있음을 알려준다.
암호화폐 중 대표적인 비트코인은 전 세계적으로 많은 관심을 받고 있으며 비트코인의 가격은 등·하락을 거듭하며 높은 변동성을 보이고 있다. 높은 변동성은 투자자들에게 위험 요인으로 작용하며 무분별한 투자로 인한 사회적 문제를 야기시킨다. 비트코인의 가격은 세계의 환경변화에 영향을 받으며 신속하게 반응하기 때문에 실시간으로 다양한 정보를 제공하는 뉴스 정보는 비트코인 가격의 변동성 예측에 유용한 정보를 제공한다. 즉, 긍정적인 뉴스는 투자심리를 자극할 것이며 반대로 부정적인 뉴스는 투자심리를 위축시킬 것이다. 따라서 본 연구에서는 비트코인의 수익률 변동을 예측하기 위해 뉴스의 감성정보와 딥러닝을 적용하였다. 로짓, 인공신경망, SVM, LSTM을 적용하여 단일 예측모형을 구축하였으며 예측성과를 향상시키기 위한 방법으로 통합모형을 제안하였다. 과거의 가격정보를 기반으로 구축한 예측모형과 뉴스의 감성정보를 반영한 예측모형의 성과를 비교한 결과 뉴스의 감성정보를 반영한 예측모형의 성과가 우수하게 나타났으며 통합모형의 성과가 가장 우수한 것으로 나타났다. 본 연구는 비트코인 수익률 변동에 대한 예측모형을 통해 무분별한 투자를 예방하고 투자자들의 현명한 투자가 이루어질 수 있도록 유용한 정보를 제공할 수 있을 것이다.
인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.
최근 AR, VR 및 스마트 디바이스 기술의 발전에 따라 피트니스 산업에서도 비대면 환경을 기반으로 한 서비스 수요가 증가하고 있다. 비대면 온라인 홈트레이닝 서비스는 기존의 오프라인 서비스에 비해 시간과 장소의 제약이 없다는 장점이 있으나 운동 기구의 부재 및 사용자의 정확한 운동 자세 유지여부, 운동량의 측정이 어려운 단점이 존재한다. 본 연구에서는 이러한 단점을 보완할 수 있는 표준 운동 프로그램을 개발하고 딥러닝 기반 신체 자세 추정 영상처리를 통하여 새로운 비대면 홈트레이닝 어플리케이션 알고리즘을 제안한다. 본 연구의 알고리즘 기반 어플리케이션을 활용한다면 표준 운동 프로그램 영상의 트레이너를 사용자가 직접 보고 따라하면서 사용자 스스로 자세를 교정하며 정확한 운동이 가능하다. 나아가 본 연구의 알고리즘을 용도에 맞게 커스터마이징 한다면 공연, 영화, 동아리 활동, 컨퍼런스 분야로의 적용도 가능할 것이다.
최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.
최근 코로나(Covid-19)의 영향으로 스마트 헬스케어 관련 산업과 비대면 방식의 원격 진단을 통한 질환 분류 예측 연구의 필요성이 증가하고 있다. 일반적으로 호흡기 질환의 진단은 비용이 많이 들고 숙련된 의료 전문가를 필요로 하여 현실적으로 조기 진단 및 모니터링에 한계가 있다. 따라서, 간단하고 편리한 청진기로부터 수집된 호흡음을 딥러닝 기반 모델을 활용하여 높은 정확도로 분류하고 조기 진단이 필요하다. 본 연구에서는 청진을 통해 수집된 폐음 데이터를 이용하여 이상 호흡음 분류모델을 제안한다. 데이터 전처리로는 대역통과필터(BandPassFilter)방법론을 적용하고 로그 멜 스펙트로그램(Log-Mel Spectrogram)과 Mel Frequency Cepstral Coefficient(MFCC)을 이용하여 폐음의 특징적인 정보를 추출하였다. 추출된 폐음의 특징에 대해서 효과적으로 분류할 수 있는 병렬 합성곱 신경망 네트워크(Parallel CNN network)모델을 제안하고 다양한 머신러닝 분류기(Classifiers)와 결합한 스태킹 앙상블(Stacking Ensemble) 방법론을 이용하여 이상 호흡음을 높은 정확도로 분류하였다. 본 논문에서 제안한 방법은 96.9%의 정확도로 이상 호흡음을 분류하였으며, 기본모델의 결과 대비 정확도가 약 6.1% 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.