• Title/Summary/Keyword: smart wireless sensing

Search Result 97, Processing Time 0.024 seconds

Frequency Allocation of WAVE for Smart Vehicle Services (주파수 간섭으로 본 스마트 자동차 서비스를 위한 WAVE 주파수 분배 방안)

  • Kim, Seung-Cheon;Rho, Kwang-Hyun;Hwang, Ho-Young;Hong, Jung-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.1-6
    • /
    • 2012
  • Recent trend of pursuing smart life began to affect the usage of vehicle in real life. The next generation of the smart vehicle services start to utilize telecommunication technology and sensing techniques for the advanced safety and efficient use of road for drivers, while there's still decency in satisfaction about vehicular safety upgrade. For this purpose, a new technology is devised as Wireless Access in Vehicular Environment(WAVE). Foreign industries now are developing technologies of key components, platform and services related to WAVE. Domestic industry just starts to develop the related technologies about WAVE, although the frequency for WAVE is not allocated. This paper introduces the status of technical standards for WAVE and the status of developing components of WAVE. And this paper also proposes the guidance of frequency allocating policy for WAVE through frequency interference experiments.

A Wireless Sensor Network Systems to Identify User and Detect Location Transition for Smart Home (지능형 주택을 위한 구성원 식별 및 위치 이동 감지 센서 네트워크 시스템)

  • Lee, Seon-Woo;Yang, Seung-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2010
  • The tracking of current location of residents is an essential requirement for context-aware service of smart houses. This paper presents a wireless sensor network system which could detect location transition such as entrance and exit to a room and also identify the user who passed the room, without duty of wearing any sort of tag. We designed new sensor node to solve the problem of short operation lifetime of previous work[1] which has two pyroelectric infrared (PIR) sensors and an ultrasonic sensor, as well as a 2.4 GHz radio frequency wireless transceiver. The proposed user identification method is to discriminate a person based on his/her height by using an ultrasonic sensor. The detection idea of entering/exiting behavior is based on order of triggering of two PIR sensors. The topology of the developed wireless sensor network system is simple star structure in which each sensor node is connected to one sink node directly. We evaluated the proposed sensing system with a set of experiments for three subjects in a model house. The experimental result shows that the averaged recognition rate of user identification is 81.3% for three persons. and perfect entering/exiting behavior detection performance.

Web-based Real Environment Monitoring Using Wireless Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Kim, Min-Ah;Byeon, Ok-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • Ubiquitous computing is one of the key technology areas in the "Project on Development of Ubiquitous computing and network technology" promoted by the Ministry of Science and Technology as a frontier business of the $21^{st}$ century in Korea, which is based on the new concept merging physical space and computer-based cyber space. With recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low-power consumption wireless micro sensor nodes have been available. Using these smart sensor nodes, there are many activities to monitor real world, for example, habitat monitoring, earthquake monitoring and so on. In this paper, we introduce web-based real environment monitoring system incorporating wireless sensor nodes. It collects sensing data produced by some wireless sensor nodes and stores them into a database system to analyze. Our environment monitoring system is composed of a networked camera and environmental sensor nodes, which are called Mica2 and developed by University of California at Berkeley. We have modified and ported network protocols over TinyOS and developed a monitoring application program using the MTS310 and MTS420 sensors that are able to observe temperature, relative humidity, light and accelerator. The sensed data can be accessed user-friendly because our environment monitoring system supports web-based user interface. Moreover, in this system, we can setup threshold values so the system supports a function to inform some anomalous events to administrators. Especially, the system shows two useful pre-processed data as a kind of practical uses: a discomfort index and a septicity index. To make both index values, the system restores related data from the database system and calculates them according to each equation relatively. We can do enormous works using wireless sensor technologies, but just environment monitoring. In this paper, we show just one of the plentiful applications using sensor technologies.

  • PDF

Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring

  • Grosse, Christian U.;Glaser, Steven D.;Kruger, Markus
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.197-209
    • /
    • 2010
  • The structural state of a bridge is currently examined by visual inspection or by wired sensor techniques, which are relatively expensive, vulnerable to inclement conditions, and time consuming to undertake. In contrast, wireless sensor networks are easy to deploy and flexible in application so that the network can adjust to the individual structure. Different sensing techniques have been used with such networks, but the acoustic emission technique has rarely been utilized. With the use of acoustic emission (AE) techniques it is possible to detect internal structural damage, from cracks propagating during the routine use of a structure, e.g. breakage of prestressing wires. To date, AE data analysis techniques are not appropriate for the requirements of a wireless network due to the very exact time synchronization needed between multiple sensors, and power consumption issues. To unleash the power of the acoustic emission technique on large, extended structures, recording and local analysis techniques need better algorithms to handle and reduce the immense amount of data generated. Preliminary results from utilizing a new concept called Acoustic Emission Array Processing to locally reduce data to information are presented. Results show that the azimuthal location of a seismic source can be successfully identified, using an array of six to eight poor-quality AE sensors arranged in a circular array approximately 200 mm in diameter. AE beamforming only requires very fine time synchronization of the sensors within a single array, relative timing between sensors of $1{\mu}s$ can easily be performed by a single Mote servicing the array. The method concentrates the essence of six to eight extended waveforms into a single value to be sent through the wireless network, resulting in power savings by avoiding extended radio transmission.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

A Fully Integrated SoC for Smart Capsule Providing In-Body Continuous pH and Temperature Monitoring

  • Liu, Heng;Jiang, Hanjun;Xia, Jingpei;Chi, Zhexiang;Li, Fule;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.542-549
    • /
    • 2016
  • This paper presents a SoC (System-on-a-Chip) dedicated for a single-chip smart capsule which can be used to continuously monitor human alimentary canal pH and temperature values. The SoC is composed of the pH and temperature sensor interface circuit, a wireless transceiver, the power management circuit and the flow control logic. Fabricated in $0.18{\mu}m$ standard CMOS technology, the SoC occupies a die area of ${\sim}9 mm^2$. The SoC consumes 6.15 mW from a 3 V power supply, guaranteeing the smart capsule battery life is no less than 24 hours when using 50 mAh coin batteries. The experimental results show that measurement accuracy of the smart capsule is ${\pm}0.1$ pH and ${\pm}0.2^{\circ}C$ for pH and temperature sensing, respectively, which meets the requirement of in-body pH and temperature monitoring in clinical practice.

Smart Touch Screen Output System Based on ICT (ICT 기반 스마트 멀티터치 영상 출력 시스템)

  • Park, Yu-Jin;Choi, Si-Woong;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.138-143
    • /
    • 2017
  • The purpose of this paper is to implement a smart touch image output system based on ICT. The image output system here uses a pen-touch type screen coordinate recognition type to minimize the error because there is a difference in the resolution of the motion pattern between the image screen and the actual image using the image sensing reaction sensor. To do so, we built a smart image output system that can output image data by using ICT based technology and can be operated remotely without a PC, laptop, monitor, keyboard and mouse by using wireless method and smart touch function instead of the existing wired method. The result of this study is that the image can be output only if there is a wall, and the pen can be operated on the output image without the screen.

Ultrasonics and electromagnetics for a wireless corrosion sensing system embedded in structural concrete

  • Hietpas, K.;Ervin, B.;Banasiak, J.;Pointer, D.;Kuchma, D.A.;Reis, H.;Bernhard, J.T.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.267-282
    • /
    • 2005
  • This work describes ongoing development of an embedded sensor system for the early detection and prevention of deterioration of reinforcing steel tendons within reinforced concrete. These devices will evaluate the condition of the steel tendon using ultrasonic techniques and then wirelessly transmit this data to the outside world without human intervention. The ultrasonic transducers and the interpretation of the sensed signals that allow detection and prognosis of tendon condition are detailed. Electrical characterization of concrete mixtures used in bridge construction is conducted and a wideband microstrip antenna is designed and fabricated to operate between 2.4 and 2.5 GHz when embedded in such a medium. Simulations and measurements of the embedded antenna element are presented. Transceiver selection and implementation are discussed as well as future work in operational protocols, sensor networking, and power sources. By implementing commercially available off-the-shelf components whenever possible, these devices have the potential to save millions of dollars a year in evaluation, repair and replacement of reinforced concrete.

Measurements of Dark Area in Sensing RFID Transponders

  • Kang, J.H.;Kim, J.Y.
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • Radiofrequency(RF) signal is a key medium to the most of the present wireless communication devices including RF identification devices(RFID) and smart sensors. However, the most critical barrier to overcome in RFID application is in the failure rate in detection. The most notable improvement in the detection was from the introduction of EPC Class1 Gen2 protocol, but the fundamental problems in the physical properties of the RF signal drew less attention. In this work, we focused on the physical properties of the RF signal in order to understand the failure rate by noting the existence of the ground planes and noise sources in the real environment. By using the mathematical computation software, Maple, we simulated the distribution of the electromagnetic field from a dipole antenna when ground planes exist. Calculations showed that the dark area can be formed by interference. We also constructed a test system to measure the failure rate in the detection of a RFID transponder. The test system was composed of a fixed RFID reader and an EPC Class1 Gen2 transponder which was attached to a scanner to sweep in the x-y plane. Labview software was used to control the x-y scanner and to acquire data. Tests in the laboratory environment showed that the dark area can be as much as 43 %. One who wants to use RFID and smart sensors should carefully consider the extent of the dark area.

A Study on Development of Ubiquitous Bio-Sensors for Increasing Energy Efficiency (에너지 효용 증대를 위한 바이오 센서 개발에 관한 연구)

  • Han, Seung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.58-63
    • /
    • 2008
  • It is essential to investigate the structure and the main characteristic of Home USN (Ubiquitous Sensor Network) technologies in built ubiquitous environment while designing bio-sensors. For this study, Thermistor elements and Thermopile black body have been selected to implement ubiquitous technologies for bio-sensors and wireless network such as WiBro has been used to transfer sensing data to the BSN (Bio-Sensor Network) gateway. It is certain that efficiency of ubiquitous space design is improved if main components of each specific sensor network are analyzed precisely in digital way and corresponding communication modules are prepared accordingly. Ubiquitous technology, in conclusion, has to be applied not only with systematical mechanism or electronic setting but in human-centered atmosphere as well, keeping with deep consideration for bio-housing service factors in eco-friendly surrounding.