Browse > Article
http://dx.doi.org/10.12989/sss.2018.22.5.509

A review on sensors and systems in structural health monitoring: current issues and challenges  

Hannan, Mahammad A. (Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional)
Hassan, Kamrul (Institute for Infrastructural Engineering, Western Sydney University)
Jern, Ker Pin (Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional)
Publication Information
Smart Structures and Systems / v.22, no.5, 2018 , pp. 509-525 More about this Journal
Abstract
Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.
Keywords
sensors; Civionic; structural health monitoring; sensor classes; wireless sensor network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stabile, T.A., Giocoli, A., Perrone, A., Palombo, A., Pascucci, S. and Pignatti, S. (2012), "A new joint application of non-invasive remote sensing techniques for structural health monitoring", J. Geophys. Eng,. 9, 53-63.   DOI
2 Sun, M., Staszewski, W. and Swamy, R. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng., 2010(2010), Article ID 724962, 13 pages.
3 Tastani, S. and Pantazopoulou, S. (2008), "Detailing procedures for seismic rehabilitation of reinforced concrete members with fiber reinforced polymers", Eng. Struct., 30, 450-461.   DOI
4 Taylor, S.G., Raby, E.Y., Farinholt, K.M., Park, G. and Todd, M. (2016), "Active-sensing platform for structural health monitoring: Development and deployment", Struct. Health Monit., 15, 413-422.   DOI
5 Teng, J., Lu, W., Wen, R. and Zhang, T. (2015), "Instrumentation on structural health monitoring systems to real world structures", Smart Struct. Syst., 15(1), 151-167.   DOI
6 Tensometer (2012), http://en.wikipedia.org/wiki/Tensometer (accessed on 14 December 2012).
7 Ting-Hua, Y., Hong-Nan, L. and Xu-Dong, Z. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21, 105033-9.   DOI
8 Tondreau, G. and Deraemaeker, A. (2013), "Local modal filters for automated data-based damage localization using ambient vibrations", Mech. Syst. Signal Pr., 39, 162-180.   DOI
9 Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, L., Cerni, G., Saleem, H., Alessandro, A. and Corradini, A. (2014), "Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors", Smart Mater. Struct., 23, 045023.   DOI
10 Maheshwari, M., Tjin, S.C. and Asundi, A. (2016), "Combined fiber Bragg grating and fiber optic polarimetric sensors on a single fiber for structural health monitoring of two-dimensional structures", Struct. Health Monit., 15, 599-609.   DOI
11 Malekzadeh, M., Gul, M., Kwon, I.B. and Catbas, N. (2014), "An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis", Smart Struct. Syst., 14(5), 917-942.   DOI
12 Mufti, A.A. (2003), "Integration of sensing in civil structures: development of the new discipline of Civionics", Struct. Health Monit. Intel. Infrastruct., 1, 119-129.
13 Mufti, A.A., Bakht, B., Tadros, G., Horosko, A.T. and Sparks, G. (2007), "Civionics-a new paradigm in design, evaluation, and risk analysis of civil structures", J. Int. Mat. Syst. Str., 18, 757-763.   DOI
14 Mufti, A.A. and Neale, K.W. (2008), "State-of-the-art of FRP and SHM applications in bridge structures in Canada", Compos. Res., 2, 60-69.
15 Nagayama, T. (2007), Structural Health Monitoring Using Smart Sensors, PhD Dissertation, University of Illinois Urbana-Champaign, Urbana, IL USA.
16 Nasrollahi, A., Deng, W., Ma, Z. and Rizzo, P. (2017), "Multimodal structural health monitoring based on active and passive sensing", Struct. Health Monit., 10.1177/1475921717699375 .   DOI
17 Grady, A. (2000), "Transducer/sensor excitation and measurement techniques", Analog Dialogue, 34, 1-6.
18 Omega (2012), The Thermosistor. http://www.princeton.edu/-cavalab/tutorials/public/Thermocouples.pdf (accessed on 11 December 2016).
19 Cazzulani, G., Moschini, S., Resta, F. and Ripamonti, F. (2013), "A diagnostic logic for preventing structural failure in concrete displacing boom", Automat. Constr., 35, 499-506.   DOI
20 Park, G., Rosing, T., Todd, M.D., Farrar, C.R. and Hodgkiss, W. (2008), "Energy harvesting for structural health monitoring sensor networks", J. Infrastruct. Syst., 14, 64-79.   DOI
21 Chen, J., Cheng, F., Xiong, F., Ge, Q. and Zhang, S. (2017), "An experimental study: Fiber Bragg grating-hydrothermal cycling integration system for seepage monitoring of rockfill dams", Struct. Health Monit., 16, 50-61.   DOI
22 Chen, Z., Li, H. and Bao, Y. (2018), "Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach", Struct. Health Monit., doi: 10.1177/1475921718788703.   DOI
23 Chen, Z., Bao, Y., Li, H. and Spencer, B.F. (2017), "A novel distribution regression approach for data loss compensation in structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717745719.   DOI
24 Cheng, L., Zhang, H. and Li, Q. (2007), "Design of a capacitive flexible weighing sensor for vehicle WIM system", Sensors, 7, 1530-1544.   DOI
25 Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.J. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", J. Steel Struct., 8, 267-275.
26 Choi, M., Shrestha, M.M., Lee J. and Park, C. (2017), "Development of a laser-powered wireless ultrasonic device for aircraft structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921716686963.   DOI
27 Civionics (2009), Custom wireless sensing and control solutions. Available on: http://Civionics.com/uncategorized/about-Civionics (accessed on 22 December 2011).
28 Wang, D.H. and Liao, W.H. (2006), "Wireless transmission for health monitoring of large structures", IEEE T. Instrum. Meas., 55, 972-981.   DOI
29 Currano, L.J., Bauman, S., Churaman, W., Peckerar, M., Wienke, J., Kim, S., Yu, M. and Balachandran, B. (2008), "Latching ultra-low power MEMS shock sensors for acceleration monitoring", Sensor. Actuat. A: Phys., 147, 490-497.   DOI
30 Venugopalan, T., Sun, T. and Grattan, K. (2008), "Long period grating-based humidity sensor for potential structural health monitoring", Sensor. Actuat. A: Phys., 148, 57-62.   DOI
31 Wang, Y.H., Lee, C.Y. and Chiang, C.M.A. (2007), "MEMS-based air flow sensor with a free-standing micro-cantilever structure", Sensors, 7, 2389-2401.   DOI
32 Watson, C., Watson, T. and Coleman, R. (2007), "Structural monitoring of cable-stayed bridge: Analysis of GPS versus modeled deflections", J. Surv. Eng., 133(1), 23-28.   DOI
33 Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure", Mech.Syst. Signal Pr., 74, 165-182.   DOI
34 Wong, L., Chiu, W.K. and Kodikara, J. (2017), "Using distributed optical fibre sensor to enhance structural health monitoring of a pipeline subjected to hydraulic transient excitation", Struct. Health Monit., doi: 10.1177/1475921717691036.   DOI
35 Xiao, H., Li, H. and Ou, J. (2011), "Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam", Sensor. Actuat. A: Phys., 167, 581-587.   DOI
36 Yang, C.C. and Hsu, Y.L. (2009), "Development of a wearable motion detector for tele-monitoring and real-time identification of physical activity", Telemed. J. E. Health, 15, 62-72.   DOI
37 Ye, X. W., Su, Y. H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Scientific World J., 2014 (2014), Article ID 652329, 11 pages. http://dx.doi.org/10.1155/2014/652329.   DOI
38 Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H. and Celler, B.G. (2006). "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring", IEEE. T. Inf. Technol. Biomed., 10, 156-167.   DOI
39 Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monit., 20, 1240-1254.   DOI
40 Kamel, I. and Juma, H. (2011), "A lightweight data integrity scheme for sensor networks", Sensors, 11, 4118-4136.   DOI
41 Kareem, A., Kijewski-Correa, T. and Bashor, R. (2005), "GPS: A new tool for structural health monitoring", APT Bulletin: J. Preservation Technol., 36(1), 13-18.
42 Kerrouche, A., Boyle, W., Sun, T. and Grattan, K. (2010), "Design and in-the-field performance evaluation of compact FBG sensor system for structural health monitoring applications", Sensor. Actuat. A: Phys., 151, 107-112.   DOI
43 Kim, J.T., Nguyen, K.D. and Huynh, T.C. (2013), "Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique", Smart Struct. Syst., 12(3), 381-397.   DOI
44 Feng, S. and Jia, J. (2017), "Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm", Struct. Health Monit., doi: 10.1177/1475921717689967.
45 Edward, S., Kerop, J. and Ratan, J.C. (2004), "Wireless intelligent sensor network for autonomous", Struct. Health Monit., Available on: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.4283.
46 Fang, K., Liu, C. and Teng, J. (2017), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717689967.   DOI
47 Farrar, C.R., Allen, D.W., Park, G., Ball, S. and Masquelier, M.P. (2006), "Coupling sensing hardware with data interrogation software for structural health monitoring", Shock Vib., 13, 519-530.   DOI
48 Guardalben, L., Villalba, L.J.G., Buiati, F., Sobral, J.B.M. and Camponogara, E. (2010), "Self-configuration and selfoptimization process in heterogeneous wireless networks", Sensor, 11, 425-454.   DOI
49 Guemes, J.A. and Menendez, J.M. (2002), "Response of Bragg grating fiber-optic sensors when embedded in composite laminates", Compos. Sci. Technol., 62, 959-966.   DOI
50 Kinet, D., Megret, P., Goossen, W., Heider, D. and Caucheteur, C. (2014), "Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions", Sensors, 14, 7394-7419.   DOI
51 Kominami, D., Sugano, M., Murata, M. and Hatauchi, T. (2010), "Energy-efficient receiver-driven wireless mesh sensor networks", Sensors, 11, 111-137.   DOI
52 Lee, D., Jeon, H. and Myung, H. (2014), "Pose-graph optimized displacement estimation for structural displacement monitoring", Smart Struct. Syst., 14(5), 943-960.   DOI
53 Yu, L. and Tian, Z. (2013), "Lamb wave structural health monitoring using a hybrid PZT-laser vibrometer approach", Struct. Health Monit., 12, 469-483.   DOI
54 Guy, K. and Jeff, S. (2011), "Principles of piezoelectri accelerometers", Sensors, Available on: http://www.sensorsmag.com>Sensors>Acceleration/Vibration (accessed on 10 December 2011).
55 Ha, D.W., Park, H.S., Choi, S.W. and Kim, Y. (2013), "A wireless MEMS-based inclinometer sensor node for structural health monitoring", Sensors, 13, 16090-16104.   DOI
56 Daly, P. (1993), "Navstar GPS and GLONASS: Global satellite navigation systems", Electro Commun. Eng. J., 5(6), 349-357.   DOI
57 Yi, TH., Li, H.N. and Zhang, XD. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart Struct. Syst., 15(1), 191-207.   DOI
58 Hackmann, G., Guo, W., Yan, G., Sun, Z., Lu, C. and Dyke, S. (2014), "Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks", IEEE T. Para. Distr. Sys., 25, 63-72.   DOI
59 Han, B., Yu, Y. and Ou, J. (2008), "Development of a wireless stress/strain measurement system integrated with pressuresensitive nickel powder-filled cement-based sensors", Sensor. Actuat. A: Phys., 147, 536-543.   DOI
60 Hassan, M.K., Zain, M.F.M, Hannan, M.A. and Jamil, M. (2010), "Sensor placement technique and GUI system for bridge girder monitoring", Int. J. Civil Struct. Eng., 1, 583-590.
61 Zeng, Y., Sreenan, C.J., Sitanayah, L., Xiong, N., Park, H. and Zheng, G. (2011), "An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring", Sensors, 11, 2899-2919.   DOI
62 Zhang, J., Zhou, Y. and Li, P.J. (2015), "Practical issues in signal processing for structural flexibility identification", Smart Struct. Syst., 15(1), 209-225.   DOI
63 Zhang, Y., Liu, W., Zhang, H., Yang, J. and Zhao, H. (2011), "Design and analysis of a differential waveguide structure to improve magnetostrictive linear position sensors", Sensors, 11, 5508-5519.   DOI
64 Akyildiz, I.F. and Stuntebeck, E.P. (2006), "Wireless underground sensor networks: Research challenges", Ad Hoc Networks, 4, 669-686.   DOI
65 Lei, Q., Shenfang, Y., Xiaoling, S. and Tianxiang, H. (2012), "Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability", Smart Mater. Struct., 21, 075032-14.   DOI
66 Leng, J. and Asundi, A. (2003), "Structural health monitoring of smart composite materials by using EFPI and FBG sensors", Sensor. Actuat. A: Phys., 103, 330-340.   DOI
67 Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45.   DOI
68 Almeida, V.A.D., Baptista, F.G. and Aguiar, P.R. (2015), "Piezoelectric transducers assessed by the pencil lead break for impedance-based structural health monitoring", IEEE Sensor. J., 15, 693-702.   DOI
69 Hong, K., Lee, J., Choi, S.W., Kim, Y. and Park, H.S. (2013), "A strain-based load identification model for beams in building structures", Sensors, 13, 9909-9920.   DOI
70 Hassan, M.K., Zain, M.F.M., Jamil, M. and Hannan, M.A. (2011), "Sensor network for bridge girder crack identification and monitoring system", Proceedings of the IEEE Int. Conf. Intelligent Computing and Intelligent System (ICIS2011), Kuala Lumpur.
71 Hu, Y., Rieutort-Louis, W.S., Sanz-Robinson, J., Huang, L., Glisic, B., Sturm, J.C., Wagner, S. and Verma, N. (2014), "Large-scale sensing system combining large-area electronics and CMOS ICs for structural-health monitoring", IEEE J. Solid-State Circuits, 49, 513-523.   DOI
72 Huang, Y., Beck, J.L., Wu, S. and Li, H. (2014), "Robust Bayesian compressive sensing for signals in structural health monitoring", Comput.-Aided Civil Infrastruct. Eng., 29, 160-179.   DOI
73 Hyeonseok, L., Hyun-Jun, P., Sohn, H. and Il-Bum, K. (2010), "Integrated guided wave generation and sensing using a single laser source and optical fibers", Meas. Sci. Technol., 21, 105207-11.   DOI
74 Jang, W.S., Healy, W.M. and Skibniewski, M.J. (2008), "Wireless sensor networks as part of a web-based building environmental monitoring system", Automat. Constr., 17, 729-736.   DOI
75 Baifeng, J. and Weilian, Q. (2008), "The research of acoustic emission techniques for non destructive testing and health monitoring on civil engineering structures", Proceedings of the International Conference on Condition Monitoring and Diagnosis, 21-24 April 2008, Beijing.
76 Annamdas, V.G.M., Bhalla, S. and Soh C.K. (2017), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16, 324-346.   DOI
77 Aszkler, C. (2005), "Chapter 5: Acceleration, Shock and Vibration Sensors," from Sensor Technology Handbook.
78 Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y. and Zeng, Z. (2017), "Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification", Struct. Health Monit., doi: 10.1177/1475921717701462.   DOI
79 Peng-hui, L., Hong-ping, Z., Hui, L. and Shun, W. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., 15(1), 227-244.   DOI
80 Peng, C., Fu, Y. and Spencer, B.F. (2017), Sensor Fault Detection, Identification, and Recovery Techniques for Wireless Sensor Networks: A Full-scale Study. In ANCRiSST2017.
81 Rivera, E., Mufti, A.A. and Thomson, D.J. (2007), "Civionics for structural health monitoring", Can. J. Civil Eng., 34, 430-437.   DOI
82 Roberts, G.W., Meng, X. and Dodson, A.H. (2004). "Integrating a global positioning system and accelerometers to monitor the deflection of bridges", J. Surv. Eng., 130(2), 65-72.   DOI
83 Sadeghian, V. and Vecchio, F. (2015), "A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures", Comput. Concrete, 16(2), 287-309.   DOI
84 Sbarufatti, C., Manes, A. and Giglio, M. (2014), "Application of sensor technologies for local and distributed structural health monitoring", Struct. Control Health Monit., 21, 1057-1083.   DOI
85 Seok, B.I., Stefan, H. and Young, J.K. (2013), "Summary review of GPS technology for structural health monitoring", J. Struct. Eng., 139, 1653-1664.   DOI
86 Liu, Z., Yu, Y., Liu, G., Wang, J. and Mao, X. (2014), "Design of a wireless measurement system based on WSNs for large bridges", Measurement, 50, 324-330.   DOI
87 Shen, Y. and Giurgiutiu, V. (2014), "Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors", J. Int. Mat. Syst. Str., 25, 506-520.   DOI
88 Shih, J.L., Kobayashi, M. and Jen, C.K. (2010), "Flexible ultrasonic transducers for structural health monitoring of pipes at high temperatures", IEEE T. Ultrason. Ferr., 57(9), 2103-2110.   DOI
89 Soil (2011), Vibrating wire crack meter. https://www.bsil.com.cn/Downloads/DataSheets/J2_VW%20Crackmeter_ds.pdf (accessed on 11 January 2011).
90 Liu, P., Lim, H.J., Yang, S., Sohn, H., Lee, C.H., Yi, Y., Kim, D., Jung, J. and Bae, I. (2017), "Development of a "stick-and-detect" wireless sensor node for fatigue crack detection", Struct. Health Monit., 16, 153-163.   DOI
91 Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B. and Wait, J.R. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(3), 393-408.   DOI
92 Lynch, J.P. and Loh, K.J. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38, 91-130.   DOI
93 Lynch, J.P., Partridge, A., Law, K.H., Kenny, T.W., Kiremidjian, A.S. and Carryer, E. (2003), "Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring", J. Aerosp. Eng., 16, 108-114.   DOI
94 Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27, 1040-1051.   DOI
95 Bao, Y., Beck, J.L. and Li, H. (2011), "Compressive sampling for accelerometer signals in structural health monitoring", Struct. Health Monit., 10, 235-246.   DOI
96 Bao, Y., Shi, Z., Wang, X. and Li, H. (2017), "Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717721457.   DOI
97 Barbezat, M., Brunner, A., Flueler, P., Huber, C. and Kornmann, X. (2004), "Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors", Sensor. Actuat. A: Phys., 114, 13-20.   DOI
98 Basumallick, N., Chatterjee, I., Biswas, P. and Dasgupta, K.B.S. (2012), "Fiber Bragg grating accelerometer with enhanced sensitivity", Sensor. Actuat. A: Phys., 173(1), 108-115.   DOI
99 Bhuiyan, M.Z.A., Wang, G., Cao, J. and Wu, J. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE T. Comput., 64, 382-395.   DOI
100 Bogdabovic, B.A., Mufti, A.A., Bagchi, A. (2005), "SHM data interpretation and structural condition assessment of the Manitoba Golden Boy", Proceedings of the SPIE 5767, 213-224.
101 Capoluongo, P., Ambrosino, C., Campopiano, S., Cutolo, A., Giordano, M., Bovio, I., Lecce, L. and Cusano, A. (2007), "Modal analysis and damage detection by Fiber Bragg grating sensors", Sensor. Actuat. A: Phys., 133, 415-424.   DOI
102 Casas, J.R. (2003), "Fiber optic sensors for bridge monitoring", J. Bridge Eng., 8(6), 362-373.   DOI
103 Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., 14(5), 981-1004.   DOI