• Title/Summary/Keyword: smart polymer

Search Result 198, Processing Time 0.022 seconds

Daylighting Performance of Office Space Applied with Electrochromic Façade System (전기변색 외피시스템 적용 업무공간의 채광 성능 분석)

  • Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.131-140
    • /
    • 2022
  • A smart window is a new building material that can realize energy savings in a building. Smart windows can freely adjust Visible Light Transmittance (VLT) and solar gain coefficient (g-value) according to the situation. Smart windows include such technologies as Electrochromic (EC), Suspended Particle Device (SPD), and Polymer Dispersed Liquid Crystal (PDLC). Recent research on building energy savings through the VLT and g-value control functions of smart windows is being actively conducted and meaningful results are being drawn. However, since most of the research is focused on energy savings, research on the indoor environment is somewhat lacking. A building is a space where people live and the comfort of life should be prioritized before energy savings. Therefore, in this study, analysis on the daylight performance of an office space was carried out. Through green building standards such as LEED, BREEAM, CASBEE, and G-SEED, the daylight performance was reviewed according to VLT value changes of the smart window. In addition, a study was conducted on the VLT range of the electrochromic façade that can maintain a comfortable indoor environment. The smart window used electrochromic control with a wide range of VLT. The study showed that the minimum VLT of a smart window that can satisfy G-SEED is 25% or more. In addition, it was found that the VLT change of the electrochromic smart window did not significantly affect the uniformity of the room. When the LEED standard was applied, the minimum VLT value of the electrochromic smart window that must be maintained according to each orientation of the building was derived.

Development of Lithium Conductive Polymer Electrolyte for Smart Windows (스마트 윈도우용 리들 전도성 전해질 개발)

  • 박태성;백희원;진교원;김영호;조봉희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.262-265
    • /
    • 1997
  • Various polymeric electrolytes were prepared from PEG, PEO and PMMA with LiClO$_4$ to develop lithium conductive electrolytes for smart windows. The complementary electrochromic devices were fabricated with these electrolytes involving cathodically coloring WO$_3$ and anodically coloring V$_2$O$\sub$5/ thin films. The performance of electrochromic device with PMMA/LiCLO$_4$ electrolyte was found to be excellent

  • PDF

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J.;Varghese, Shyni
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.185-198
    • /
    • 2011
  • The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

Effects of PZT Powder on Vibration and Compression Properties of Ti Powder/Polymer Concrete Composites (PZT 파우더 첨가에 따른 티타늄 파우더/폴리머 콘크리트 복합재료의 진동 특성 및 압축 물성 분석)

  • Park, Jaehyun;Kim, Seok-Ryong;Kim, Kyoung-Soo;Kim, Geon;Kim, Seok-Ho;Lee, Beom-Joo;Jeong, Anmok;An, Jonguk;Kim, Seon Ju;Lee, Si-Maek;Yoo, Hyeong-Min
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.134-138
    • /
    • 2022
  • In this study, Ti powder/Polymer concrete composites were processed by adding the PZT powder, one of the piezoelectric materials, to improve the vibration damping effect of Polymer concrete. Ti powder was added at a constant ratio in order to maximize the vibration damping effect using the piezoelectric effect. Three types of composite material specimens were prepared: a specimen without PZT powder, specimens with 2.5 wt% and 5 wt% of PZT powder. The vibration characteristics and compression properties were analyzed for all specimens. As a result, it was confirmed that as the addition ratio of PZT powder increased, the Inertance value at the resonant frequency decreased due to the piezoelectric effect when the vibration generated from Ti powder/polymer concrete was transmitted. Especially, the Inertance value was decreased by about 19.3% compared to the specimen without PZT at the resonant frequency. The change in acceleration with time also significantly decreased as PZT powder was added, confirming the effect of PZT addition. In addition, through the compression strength test, it was found that the degree of deterioration in compression properties due to the addition of PZT up to 5 wt% was insignificant, and it was confirmed that the powder was evenly dispersed in the composites through the cross-sectional analysis of the specimen.

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor (부착형 고분자 압전센서를 이용한 탄성파 검출 연구)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Kueon, Jae-Hwa;Lee, Young-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.268-274
    • /
    • 2004
  • Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor.

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.