• Title/Summary/Keyword: smart order service

Search Result 439, Processing Time 0.026 seconds

JSFlow: A Technique for Controlling Tasks Using Workflow Specification in a Blockchain-based Collaborative System (JSFlow : 블록체인 기반 협업 시스템에서의 워크플로우를 이용한 작업 제어 기법)

  • Eom, Hyun-Min;Yoon, Yeo-Guk;Lee, Myung-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.10
    • /
    • pp.763-774
    • /
    • 2019
  • A collaborative system supports collaboration among participants by providing functions such as group composition and management of data shared for collaboration. In recent years, research on collaborative services based on the blockchain technology has been done to guarantee the reliability of collaboration processes and outcomes. The diversity of the application domains in which collaborations are performed and the various characteristics of the participants in the collaboration group naturally leads to various forms of collaborative processes. In order for these processes to produce the desired outcome of the collaborative efforts, it is desirable to specify the appropriate collaborative process in advance, so that the participants can understand and agree on the process, carrying out the collaboration. In this paper, we propose a method to control flexible collaborative processes according to workflow specifications in the Ethereum-based collaborative service environment. The specification of the workflow for the designated task is stored in the Ethereum smart contract and the process of performing the task is controlled according to the stored workflow specification. For this, we introduce JSFlow which is a simple workflow specification method using JSON and an Ethereum library to utilize it.

Development and Utilization of Linked Data of Port Maintenance Information for Port Facilities Based on Port BIM Standards (항만 BIM 표준 기반 항만 유지관리 정보의 링크드데이터 구축 및 활용)

  • Shin, Jaeyoung;Moon, Hyounseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.501-510
    • /
    • 2023
  • The importance of using construction data is increasing in accordance with the recent trend in the smart construction. However, construction project and maintenance information is distributed on the web, and the existing BIM(Building Information Modeling) information exchange and linking method using IFC(Industry Foundation Classes) cannot support connection with BIM data and web resources. This study aims to establish the BIM-based port facility data integration system using linked data(LD) technology in order to integrate BIM and heterogeneous data in the port maintenance domain. To this end, the port BIM-based ifcOWL and port facility maintenance ontology were designed, and LD was built for the BIM and maintenance information of Busan New Port 2-1 Pier3, a BIM pilot project. In addition, service prototypes such as search, statistics and SPARQL(SPARQL Protocol and RDF Query Language) endpoint functions were implemented using the issued LD. The LD-based information utilization system is expected to improve the reusability of information by converting the existing closed information system into an open system and BIM and maintenance data as a web resource in a standard format.

The Effect of Entrepreneurial Mentoring Quality on Educational Satisfaction, Recommendation Intention and Entrepreneurial Intention : Focused on Female College Students (창업 멘토링 기능이 교육만족과 추천의도 그리고 창업의도에 미치는 영향 : 여대생을 중심으로)

  • Bae, Jee-Eun;Han, In-Su;Lee, Phil-Soo
    • The Korean Journal of Franchise Management
    • /
    • v.8 no.2
    • /
    • pp.25-36
    • /
    • 2017
  • Purpose - Recently, entrepreneurship education has been revitalized with interest in entrepreneurship. Entrepreneurship education is an educational service activity that is provided for entrepreneurship and individual start-up success within a certain period of time. According to previous studies on entrepreneurship and entrepreneurship, the satisfaction of entrepreneurship education affects entrepreneurship and as a result increases entrepreneurship. In recent years, the number of female entrepreneurs has also increased as the number of entrepreneurial issues has increased. Based on previous studies, this research proposed the theoretical framework about the structural relationships among mentoring quality (career development, psychological social, role modeling), education satisfaction, recommendation intention and entrepreneurial intention. This study is to find out the possibility of attempting to create a theoretical basis for entrepreneurial mentoring education in entrepreneurship education program. Research design, data, and methodology - In this model, mentoring quality consists of three sub-dimensions such as career development, psychological social, and role modeling. In order to test research model and hypotheses, the data were collected from 203 female college students who participated in entrepreneurial education. The data were analyzed using frequency analysis, confirmatory factor analysis, correlation analysis, and structural equational modeling with SPSS 24.0 and SmartPLS 3.0 statistical program. Result - The results of the study are as follows. First, role modeling has a positive effect on recommendation intention and entrepreneurial intention. Second, career development has a strong negative effect on the entrepreneurial intention. Third, career development and role modeling had a positive effect on educational satisfaction, and educational satisfaction had positive influence on recommendation intention and entrepreneurial intention. Conclusions - As women's social advancement becomes more active, start-up support programs including entrepreneurship mentoring are increasing. The results of this study suggest how to use the mentoring program mix and how to allocate the resources for the education program when the entrepreneurial education manager plans and executes the mentoring education program. For example, this study shows that career development and role modeling enhance educational satisfaction, and in turn increase recommendation intention and entrepreneurial intention. This means that entrepreneurship education should consist of contents that include career development functions such as sponsorship, guidance, protection, and provision of challenging work. In addition, the findings of this study indicate that mentors should perform the function of allowing the participants to have confidence and professional thinking ability at the time of start up based on their experiences.

Big data analysis on NAVER Smart Store and Proposal for Sustainable Growth Plan for Small Business Online Shopping Mall (네이버 스마트스토어에 대한 빅데이터 분석 및 소상공인 온라인쇼핑몰 지속성장 방안 제안)

  • Hyeon-Moon Chang;Seon-Ju Kim;Chae-Woon Kim;Ji-Il Seo;Kyung-Ho Lee
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.153-172
    • /
    • 2022
  • Online shopping has transformed and rapidly grown the entire market at the forefront of wholesale and retail services as an effective solution to issues such as digital transformation and social distancing policy (COVID-19 pandemic). Small business owners, who form the majority at the center of the online shopping industry, are constantly collecting policy changes and market trend information to overcome these problems and use them for marketing and other sales activities in order to overcome these problems and continue to grow. Objective and refined information that is more closely related to the business is also needed. Therefore, in this paper, through the collection and analysis of big data information, which is the core technology of digital transformation, key variables are set in product classification, sales trends, consumer preferences, and review information of online shopping malls, and a method of using them for competitor comparison analysis and business sustainability evaluation has been prepared and we would like to propose it as a service. If small and medium-sized businesses can benchmark competitors or excellent businesses based on big data and identify market trends and consumer tendencies, they will clearly recognize their level and position in business and voluntarily strive to secure higher competitiveness. In addition, if the sustainable growth of the online shopping mall operator can be confirmed as an indicator, more efficient policy establishment and risk management can be expected because it has an improved measurement method.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

Study on the Relationships Among Perceived Shopping Values, Brand Equity, and Store Loyalty of Korean and Chinese Consumers: A Case of Large Discount Store (한국과 중국 소비자의 쇼핑 경험가치 지각과 브랜드자산 및 점포충성도의 관계에 관한 비교 연구: 대형 할인점을 중심으로)

  • Hwang, Soonho;Oh, Jongchul;Yoon, Sungjoon
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.209-237
    • /
    • 2012
  • 1. Research Purpose Consumers rely on various clues to evaluate their decision to patronize a retail store, and store brand is one of them (Dodds 1991; Grewal et al. 1998). As consumers find ever increasing variety of contact points connecting them to specific store, the value of experiential shopping as a means of increasing store's brand equity warrants greater attention from scholars of retail management. Retail shopping values are credited for creating not only cognitive experiences like brand knowledge but also emotional experiences such as shopping pleasure and pride (Schmitt 1999). This may be because today's consumers place emphasis on emotional values associated with shopping pleasure, lifestyle brought to life, brand relationship, and store atmosphere more than utilitarian values such as product quality and price. Many previous literature found this to be true (Ahn and Lee 2011; Mathwick et al. 2001). This brings forth important research issues and questions regarding the roles of shopping experiential values and brand equity with regard to consumer's retail patronage choice. However, despite this importance, research on this area remains quite inadequate (Hwang 2010). For this reason, this study aims to verify the relationships among experiential shopping values, retail store brand equity and tries to link that with customer loyalty by surveying large-scale discount store shoppers in Korea and China. 2. Research Contents In order to carry out the research objective, this study conducted comprehensive literature survey on previous literature by discussing major findings and implications with regard to shopping values and retail brand equity and store loyalty. For data collection, researcher employed survey-based research method where data were collected in two major cities of Korea (Seoul) and China (Bejing) and sampling frame was based on patrons of large discount stores in both countries. Specific research questions raised in this study are as follows; RQ1: How do Korean and Chinese consumers differently perceive of shopping values regarding shopping at large-sclae discount stores? RQ2: Are there differences in consumers' emotional consumption propensities? RQ3: Do Korean and Chinese consumers display different perceptions of brand equity towards large-scale discount stores? RQ4: Are there differences in relationships between shopping values and brand equity for Korean and Chinese consumers? For statistical analysis, SPSS17.0, AMOS17.0 and SmartPLS were employed. 3. Research Results The data collected through face-to-face survey conducted in Seoul and Bejing revealed appropriate data validity and reliability as a result of exploratory/confirmatory factor analysis and reliability tests, andh SEM model yielding satisfactory model fitness. The result of the study may be summarized by three main points. First, as a result of testing differences in consumption dispositions, Chinese consumers showed higher scores in aesthetic and symbolic dispositions, whereas Korean consumers scored higher in hedonic disposition. Second, testing on perceptions toward brand equity of large discount stores showed that Korean consumers exhibited more positive perceptions of brand awareness and brand image than Chinese counterparts. Third, the result of exploratory factor analysis on the experiential shopping values revealed different factors for each country. On Korean side, consumer interest value, aesthetic value, and hedonic value were prominent, whereas on Chinese side, hedonic value, aesthetic value, consumer interest value, and service excellence value were found salient. 4. Research Implications While many previous studies on inter-country differences in retailing area mainly focused on cultural dispositions or orientations to explain the differences, this study sets itself apart by specifically targeting individual consumer's shopping values from an experiential viewpoint. The study result provides important theoretical as well as practical implications for large-scale discount store, especially the impotance of fully exploring the linkage between shopping values and brand equity, which has significant influence on loyalty. Therefore, the specific implications deriving from the result shed some important insights upon the consumption values based on shopping experiences and brand equity. The differences found in store shoppers between the two countries may also provide useful insights for Korean and Chinese retailers who plan to expand their operations globally. Related strategic implications derived from this study is the importance of localizing retail strategy which is based on the differences found in experiential shopping values between the two country groups. Especially the finding that Chinese consumers value consumer interest and service excellence, whereas Koreans place importance on hedonic or aesthetic values indicates the need to differentiate the consumer's psychographical profiles when it comes to expanding retail operations globally. Particularly important will be to pursue price-orienated strategy in China in consideration of the high emphasis on consumer interests and service excellence, but to emphasize the symbolic aspects of brand equity in Korea by maximizing the brand equity associated with aesthetic values and hedonic orientations. 5. Recommendations This study focused on generic retail branded discount stores in both countries, thus making it difficult to tease out store-specific strategies based on specific retail brands. Future studies may benefit fro employing actual brand names in survey questionnaire to verify relationship between shopping values and brand-based store strategy. As with other studies of this nature, this study needs to strengthen the result's generalizability by selecting respondents from a wider spectrum of respondents.

  • PDF

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.