• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.173 seconds

Analysis of Equipment Factor for Smart Manufacturing System (스마트제조시스템의 설비인자 분석)

  • Ahn, Jae Joon;Sim, Hyun Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

Empowering Agriculture: Exploring User Sentiments and Suggestions for Plantix, a Smart Farming Application

  • Mee Qi Siow;Mu Moung Cho Han;Yu Na Lee;Seon Yeong Yu;Mi Jin Noh;Yang Sok Kim
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.38-46
    • /
    • 2023
  • Farming activities are transforming from traditional skill-based agriculture into knowledge-based and technology-driven digital agriculture. The use of intelligent information and communication technology introduces the idea of smart farming that enables farmers to collect weather data, monitor crop growth remotely and detect crop diseases easily. The introduction of Plantix, a pest and disease management tool in the form of a mobile application has allowed farmers to identify pests and diseases of the crop using their mobile devices. Hence, this study collected the reviews of Plantix to explore the response of the users on the Google Play Store towards the application through Latent Dirichlet Allocation (LDA) topic modeling. Results indicate four latent topics in the reviews: two positive evaluations (compliments, appreciation) and two suggestions (plant options, recommendations). We found the users suggested the application to additional plant options and additional features that might help the farmers with their difficulties. In addition, the application is expected to benefit the farmer more by having an early alert of diseases to farmers and providing various substitutes and a list of components for the remedial measures.

Detecting Knowledge structures in Artificial Intelligence and Medical Healthcare with text mining

  • Hyun-A Lim;Pham Duong Thuy Vy;Jaewon Choi
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.817-837
    • /
    • 2019
  • The medical industry is rapidly evolving into a combination of artificial intelligence (AI) and ICT technology, such as mobile health, wireless medical, telemedicine and precision medical care. Medical artificial intelligence can be diagnosed and treated, and autonomous surgical robots can be operated. For smart medical services, data such as medical information and personal medical information are needed. AI is being developed to integrate with companies such as Google, Facebook, IBM and others in the health care field. Telemedicine services are also becoming available. However, security issues of medical information for smart medical industry are becoming important. It can have a devastating impact on life through hacking of medical devices through vulnerable areas. Research on medical information is proceeding on the necessity of privacy and privacy protection. However, there is a lack of research on the practical measures for protecting medical information and the seriousness of security threats. Therefore, in this study, we want to confirm the research trend by collecting data related to medical information in recent 5 years. In this study, smart medical related papers from 2014 to 2018 were collected using smart medical topics, and the medical information papers were rearranged based on this. Research trend analysis uses topic modeling technique for topic information. The result constructs topic network based on relation of topics and grasps main trend through topic.

Smart Space based on Platform using Big Data for Efficient Decision-making (효율적 의사결정을 위한 빅데이터 활용 스마트 스페이스 플랫폼 연구)

  • Lee, Jin-Kyung
    • Informatization Policy
    • /
    • v.25 no.4
    • /
    • pp.108-120
    • /
    • 2018
  • With the rise of the Fourth Industrial Revolution and I-Korea 4.0, both of which pursue strategies for industrial innovation and for the solution to social problems, the real estate industry needs to change in order to make effective use of available space in smart environments. The implementation of smart spaces is a promising solution for this. The smart space is defined as a good use of space, whether it be a home, office, or retail store, within a smart environment. To enhance the use of smart spaces, efficient decision-making and well-timed and accurate interaction are required. This paper proposes a smart space based on platform which takes advantage of emerging technologies for the efficient storage, processing, analysis, and utilization of big data. The platform is composed of six layers - collection, transfer, storage, service, application, and management - and offers three service frameworks: activity-based, market-based, and policy-based. Based on these smart space services, decision-makers, consumers, clients, and social network participants can make better decisions, respond more quickly, exhibit greater innovation, and develop stronger competitive advantages.

A Machine Learning Based Facility Error Pattern Extraction Framework for Smart Manufacturing (스마트제조를 위한 머신러닝 기반의 설비 오류 발생 패턴 도출 프레임워크)

  • Yun, Joonseo;An, Hyeontae;Choi, Yerim
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.97-110
    • /
    • 2018
  • With the advent of the 4-th industrial revolution, manufacturing companies have increasing interests in the realization of smart manufacturing by utilizing their accumulated facilities data. However, most previous research dealt with the structured data such as sensor signals, and only a little focused on the unstructured data such as text, which actually comprises a large portion of the accumulated data. Therefore, we propose an association rule mining based facility error pattern extraction framework, where text data written by operators are analyzed. Specifically, phrases were extracted and utilized as a unit for text data analysis since a word, which normally used as a unit for text data analysis, is unable to deliver the technical meanings of facility errors. Performances of the proposed framework were evaluated by addressing a real-world case, and it is expected that the productivity of manufacturing companies will be enhanced by adopting the proposed framework.

An Open Map API based-Prototype Utilizing Frequent Pattern Mining Technique for Efficient Service of Customized Land Information (맞춤형 국토정보의 효과적 제공을 위한 빈발 패턴 탐사 기법을 활용한 오픈맵 API 기반 프로토타입)

  • Lee, Dong-Gyu;Yi, Gyeong-Min;Shin, Dong-Mun;Kim, Jae-Chul;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.95-99
    • /
    • 2010
  • Spatial information systems have developed in order to provide users with customized land information in u-City environments. The spatial information systems can detect spatial information for users anytime anywhere. Information which is analyzed by data mining techniques can be offered for other users. Therefore, we propose open map API-based prototype which utilizes frequent pattern mining technique. Proposed prototype can mine interesting trip routes and unknown attractions in location data of geophoto. Also, proposed prototype is the first attempt which analyzes spatial patterns can be represented on a map which is selected by users. Our prototype can be applied to the smart phone like mobile devices.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

A Study of the Planning for Development of Smart City Energy Service Module with Citizen Participation (시민참여형 스마트시티 에너지 서비스 모듈 개발 기획에 관한 연구)

  • Shim, Hong-Souk;Lee, Sung-Joo;Park, Kyeong-Min;Seo, Youn-Kyu;Jung, Hyun-Chae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.519-531
    • /
    • 2020
  • Global warming is accelerating as greenhouse gas emissions increase owing to the increase in population and urbanization rates worldwide. As an alternative to this solution, smart cities are being promoted. The purpose of this paper is to suggest a plan for developing energy service modules for the Sejong 5-1 living area, which has been selected as a test-bed for smart cities in Korea. Based on the smart city plans announced by the government for this study, a survey questionnaire on 12 energy services was composed by collecting the opinions of experts. The survey was conducted with 1,000 citizens, the degree of necessity of energy service that citizens think of was identified. Principal Component Analysis and Association Rule Mining were conducted to describe 12 energy service items in a reduced manner and analyze the correlation and relationship of each energy service. Finally, three modules were suggested using the analyzed results so that 12 energy services could be implemented in an efficient platform. These results are expected to contribute to the realization of a smart city to make them easily accessible for those who want to promote platform services in the energy field and envision energy service items.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Topic Model Analysis of Research Trend on Spatial Big Data (공간빅데이터 연구 동향 파악을 위한 토픽모형 분석)

  • Lee, Won Sang;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.64-73
    • /
    • 2015
  • Recent emergence of spatial big data attracts the attention of various research groups. This paper analyzes the research trend on spatial big data by text mining the related Scopus DB. We apply topic model and network analysis to the extracted abstracts of articles related to spatial big data. It was observed that optics, astronomy, and computer science are the major areas of spatial big data analysis. The major topics discovered from the articles are related to mobile/cloud/smart service of spatial big data in urban setting. Trends of discovered topics are provided over periods along with the results of topic network. We expect that uncovered areas of spatial big data research can be further explored.