• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.02 seconds

An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms (스마트홈 지능형 서비스 플랫폼을 위한 데이터 마이닝 기법에 대한 적합도 평가)

  • Kim, Kilhwan;Keum, Changsup;Chung, Ki-Sook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.68-77
    • /
    • 2017
  • In order to implement the smart home environment, we need an intelligence service platform that learns the user's life style and behavioral patterns, and recommends appropriate services to the user. The intelligence service platform should embed a couple of effective and efficient data mining algorithms for learning from the data that is gathered from the smart home environment. In this study, we evaluate the suitability of data mining algorithms for smart home intelligent service platforms. In order to do this, we first develop an intelligent service scenario for smart home environment, which is utilized to derive functional and technical requirements for data mining algorithms that is equipped in the smart home intelligent service platform. We then evaluate the suitability of several data mining algorithms by employing the analytic hierarchy process technique. Applying the analytical hierarchy process technique, we first score the importance of functional and technical requirements through a hierarchical structure of pairwise comparisons made by experts, and then assess the suitability of data mining algorithms for each functional and technical requirements. There are several studies for smart home service and platforms, but most of the study have focused on a certain smart home service or a certain service platform implementation. In this study, we focus on the general requirements and suitability of data mining algorithms themselves that are equipped in smart home intelligent service platform. As a result, we provide a general guideline to choose appropriate data mining techniques when building a smart home intelligent service platform.

Analysis of International Standardization Trends of Smart Mining Technology: Focusing on GMG Guidelines (스마트 마이닝 기술 국제 표준화 동향 분석: GMG 가이드라인을 중심으로)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.173-193
    • /
    • 2022
  • In this study, international standardization trend of smart mining technology was analyzed focusing on the guidelines developed by GMG (Global Mining Guidelines Group). GMG is a non-profit organization that unites the global mining community. It was established to promote mining safety, innovation and sustainability. Currently, GMG's working group consists of artificial intelligence, asset management, autonomous mining, cybersecurity, data access and usage/interoperability, the electric mine, mineral processing, underground mining, and sustainability. Guideline development projects related to smart mining technology are being conducted in artificial intelligence, autonomous mining, cybersecurity, data access and usage/interoperability, and underground mining. As of April 2022, eight types of smart mining-related guidelines have been published through pre-launch, launch, guideline definition, contents generation, technical editing/layout/final review, and voting process. It is judged that the GMG guidelines can be an important reference for the development of domestic smart mining technology standards.

Development of Smart Mining Technology Level Diagnostics and Assessment Model for Mining Sites (광산 현장의 스마트 마이닝 기술 수준 진단평가 모델 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.78-92
    • /
    • 2022
  • In this study, we proposed a diagnostics and assessment model for mining sites that can evaluate the smart mining technology level in a systematic and structured way. For this, the maturity of the smart mining was defined, and detailed assessment items of the diagnostics and assessment model for smart mining were derived by considering the smart factory diagnostics and assessment model (KS X 9001-3) used in the manufacturing industry. While maintaining the existing system, the existing 46 detailed assessment items were modified to be suitable for mining. As a result, a total of 29 detailed assessment items were derived in the areas of promotion strategy, process, information system and automation, and performance. Based on this, a questionnaire was designed to diagnose the level of smart mining technology, and assessment was performed by applying it to domestic iron mines. The level of smart mining technology in the study area was found to be level 2, and it could be inferred that it was about 40% lower than the average smart level of the general manufacturing industry. In addition, by using the developed model, it was possible to recognize the weak points of the mine at each stage of the introduction, operation, and advancement of smart mining, and to suggest investment and improvement directions.

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.

Intelligent Service Reasoning Model Using Data Mining In Smart Home Environments (스마트 홈 환경에서 데이터 마이닝 기법을 이용한 지능형 서비스 추론 모델)

  • Kang, Myung-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.767-778
    • /
    • 2007
  • In this paper, we propose a Intelligent Service Reasoning (ISR) model using data mining in smart home environments. Our model creates a service tree used for service reasoning on the basis of C4.5 algorithm, one of decision tree algorithms, and reasons service that will be offered to users through quantitative weight estimation algorithm that uses quantitative characteristic rule and quantitative discriminant rule. The effectiveness in the performance of the developed model is validated through a smart home-network simulation.

Detecting smartphone user habits using sequential pattern analysis

  • Lu, Dang Nhac;Nguyen, Thu Trang;Nguyen, Thi Hau;Nguyen, Ha Nam;Choi, Gyoo Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.20-22
    • /
    • 2015
  • Recently, the study of smart phone user habits has become a highly focused topic due to the rapid growth of the smart phone market. Indeed, sequential pattern analysis methods were efficiently used for web-based user habit mining long time ago. However, by means of simulations, it has been observed that these methods might fail for smart phone-based user habit mining. In this paper, we propose a novel approach that leads to a considerably increased performance of the traditional sequential pattern analysis methods by reasonably cutting off each chronological sequence of user logs on a device into shorter ones, which represent the sequential user activities in various periods of a day.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

Q-omics: Smart Software for Assisting Oncology and Cancer Research

  • Lee, Jieun;Kim, Youngju;Jin, Seonghee;Yoo, Heeseung;Jeong, Sumin;Jeong, Euna;Yoon, Sukjoon
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.843-850
    • /
    • 2021
  • The rapid increase in collateral omics and phenotypic data has enabled data-driven studies for the fast discovery of cancer targets and biomarkers. Thus, it is necessary to develop convenient tools for general oncologists and cancer scientists to carry out customized data mining without computational expertise. For this purpose, we developed innovative software that enables user-driven analyses assisted by knowledge-based smart systems. Publicly available data on mutations, gene expression, patient survival, immune score, drug screening and RNAi screening were integrated from the TCGA, GDSC, CCLE, NCI, and DepMap databases. The optimal selection of samples and other filtering options were guided by the smart function of the software for data mining and visualization on Kaplan-Meier plots, box plots and scatter plots of publication quality. We implemented unique algorithms for both data mining and visualization, thus simplifying and accelerating user-driven discovery activities on large multiomics datasets. The present Q-omics software program (v0.95) is available at http://qomics.sookmyung.ac.kr.

Study on the Trends of U-City and Smart City Researches using Text Mining Technology (텍스트마이닝 기법을 이용한 U-City와 Smart City의 연구 동향에 대한 분석)

  • Lim, Si Yeong;Lim, Yong Min;Lee, Jae Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.87-97
    • /
    • 2014
  • City is currently developing into intelligent city which adopts the ICT technology to resolve the problems and increase the competitiveness. This intelligent city is promoted under the name of U-City or Smart City, yet it is also criticized in the trend for what the differences between U-City and Smart City are. In this study, we draws the differences between U-City and Smart City from our distinctive research method, text mining which analyzes the trend of research papers, and contribute to direction of U-City study in the future. Through this analysis, the study results in that U-City focuses practical implementation in domestic cities while Smart City focuses technological development and provision of single service. However, this paper has a limitation as the subjective opinion was reflected to configure the sets of keywords, and only keywords and s were analyzed. Therefore, further studies are needed to confirm the differences between U-City and Smart City with related research papers and reports.

Mining based Mental Health and Blood Pressure Management Service for Smart Health (스마트 헬스를 위한 마이닝 기반의 정신 건강과 혈압 관리 서비스)

  • Jung, Eun-Jin;Kim, Joo-Chang;Jung, Hoill;Yoo, Hyun;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • As the convergence technology is developing rapidly and the portable mobile devices are spreading in ubiquitous smart healthcare, users were able to get medical information easily through the smart health platform. According to such rapid industrialization, wellness care, aging society, information society, changes in disease aspects and life style, user-centered healthcare, and health promotion contents are being offered. In this study, we proposed the mining based mental health and blood pressure management service for the smart health. The proposed method provides the mental health management service and the blood pressure management service for chronic disease patients within the mining based smart health platform. Users receive optimized healthcare services regardless of time and place in the PHR based smart health platform. For the performance evaluation of the proposed mining based mental health and blood pressure management service, F-measure verification are conducted.