DOI QR코드

DOI QR Code

Q-omics: Smart Software for Assisting Oncology and Cancer Research

  • Lee, Jieun (Department of Biological Sciences, Sookmyung Women's University) ;
  • Kim, Youngju (Department of Biological Sciences, Sookmyung Women's University) ;
  • Jin, Seonghee (Department of Biological Sciences, Sookmyung Women's University) ;
  • Yoo, Heeseung (Department of Biological Sciences, Sookmyung Women's University) ;
  • Jeong, Sumin (Department of Biological Sciences, Sookmyung Women's University) ;
  • Jeong, Euna (Research Institute of Women's Health, Sookmyung Women's University) ;
  • Yoon, Sukjoon (Department of Biological Sciences, Sookmyung Women's University)
  • Received : 2021.06.25
  • Accepted : 2021.09.04
  • Published : 2021.11.30

Abstract

The rapid increase in collateral omics and phenotypic data has enabled data-driven studies for the fast discovery of cancer targets and biomarkers. Thus, it is necessary to develop convenient tools for general oncologists and cancer scientists to carry out customized data mining without computational expertise. For this purpose, we developed innovative software that enables user-driven analyses assisted by knowledge-based smart systems. Publicly available data on mutations, gene expression, patient survival, immune score, drug screening and RNAi screening were integrated from the TCGA, GDSC, CCLE, NCI, and DepMap databases. The optimal selection of samples and other filtering options were guided by the smart function of the software for data mining and visualization on Kaplan-Meier plots, box plots and scatter plots of publication quality. We implemented unique algorithms for both data mining and visualization, thus simplifying and accelerating user-driven discovery activities on large multiomics datasets. The present Q-omics software program (v0.95) is available at http://qomics.sookmyung.ac.kr.

Keywords

Acknowledgement

This work was financially supported by grants from the National Research Foundation of Korea (KRF), including the Science Research Center Program (NRF-2016R1A5A1011974), and the Mid-career Researcher Program (NRF-2017R1A2B2007745 and NRF-2018R1A2B6009313), funded by the Korean government (MEST).

References

  1. Aran, D., Hu, Z., and Butte, A.J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220. https://doi.org/10.1186/s13059-017-1349-1
  2. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607. https://doi.org/10.1038/nature11003
  3. Biswas, A., Haldane, A., Arnold, E., and Levy, R.M. (2019). Epistasis and entrenchment of drug resistance in HIV-1 subtype B. Elife 8, e50524. https://doi.org/10.7554/eLife.50524
  4. Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113-1120. https://doi.org/10.1038/ng.2764
  5. Cao, R., Yuan, L., Ma, B., Wang, G., Qiu, W., and Tian, Y. (2020). An EMT-related gene signature for the prognosis of human bladder cancer. J. Cell. Mol. Med. 24, 605-617. https://doi.org/10.1111/jcmm.14767
  6. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
  7. Eckstein, M., Strissel, P., Strick, R., Weyerer, V., Wirtz, R., Pfannstiel, C., Wullweber, A., Lange, F., Erben, P., Stoehr, R., et al. (2020). Cytotoxic T-cell-related gene expression signature predicts improved survival in muscle-invasive urothelial bladder cancer patients after radical cystectomy and adjuvant chemotherapy. J. Immunother. Cancer 8, e000162. https://doi.org/10.1136/jitc-2019-000162
  8. Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau, K.W., Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012). Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570-575. https://doi.org/10.1038/nature11005
  9. Ghandi, M., Huang, F.W., Jane-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R., 3rd, Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503-508. https://doi.org/10.1038/s41586-019-1186-3
  10. Guan, N.N., Zhao, Y., Wang, C.C., Li, J.Q., Chen, X., and Piao, X. (2019). Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol. Ther. Nucleic Acids 17, 164-174. https://doi.org/10.1016/j.omtn.2019.05.017
  11. He, N., Kim, N., Song, M., Park, C., Kim, S., Park, E.Y., Yim, H.Y., Kim, K., Park, J.H., Kim, K.I., et al. (2014). Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol. Cancer Ther. 13, 2463-2473. https://doi.org/10.1158/1535-7163.MCT-14-0297
  12. Hong, Y., Kim, N., Li, C., Jeong, E., and Yoon, S. (2017). Patient sample-oriented analysis of gene expression highlights extracellular signatures in breast cancer progression. Biochem. Biophys. Res. Commun. 487, 307-312. https://doi.org/10.1016/j.bbrc.2017.04.055
  13. Iorio, F., Knijnenburg, T.A., Vis, D.J., Bignell, G.R., Menden, M.P., Schubert, M., Aben, N., Goncalves, E., Barthorpe, S., Lightfoot, H., et al. (2016). A landscape of pharmacogenomic interactions in cancer. Cell 166, 740-754. https://doi.org/10.1016/j.cell.2016.06.017
  14. Jeong, E., Lee, Y., Kim, Y., Lee, J., and Yoon, S. (2020). Analysis of cross-association between mRNA expression and RNAi efficacy for predictive target discovery in colon cancers. Cancers (Basel) 12, 3091. https://doi.org/10.3390/cancers12113091
  15. Kim, N., Yim, H.Y., He, N., Lee, C.J., Kim, J.H., Choi, J.S., Lee, H.S., Kim, S., Jeong, E., Song, M., et al. (2016). Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci. Rep. 6, 29721. https://doi.org/10.1038/srep29721
  16. Kitsou, M., Ayiomamitis, G.D., and Zaravinos, A. (2020). High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int. J. Oncol. 57, 237-248. https://doi.org/10.3892/ijo.2020.5062
  17. Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., and Liu, X.S. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48(W1), W509-W514. https://doi.org/10.1093/nar/gkaa407
  18. Li, W., Wang, H., Ma, Z., Zhang, J., Ou-Yang, W., Qi, Y., and Liu, J. (2019). Multi-omics analysis of microenvironment characteristics and immune escape mechanisms of hepatocellular carcinoma. Front. Oncol. 9, 1019. https://doi.org/10.3389/fonc.2019.01019
  19. Li, Y., Umbach, D.M., Krahn, J.M., Shats, I., Li, X., and Li, L. (2021). Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics 22, 272. https://doi.org/10.1186/s12864-021-07581-7
  20. McFarland, J.M., Ho, Z.V., Kugener, G., Dempster, J.M., Montgomery, P.G., Bryan, J.G., Krill-Burger, J.M., Green, T.M., Vazquez, F., Boehm, J.S., et al. (2018). Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 9, 4610. https://doi.org/10.1038/s41467-018-06916-5
  21. Meyers, R.M., Bryan, J.G., McFarland, J.M., Weir, B.A., Sizemore, A.E., Xu, H., Dharia, N.V., Montgomery, P.G., Cowley, G.S., Pantel, S., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779-1784. https://doi.org/10.1038/ng.3984
  22. Monks, A., Zhao, Y., Hose, C., Hamed, H., Krushkal, J., Fang, J., Sonkin, D., Palmisano, A., Polley, E.C., Fogli, L.K., et al. (2018). The NCI Transcriptional Pharmacodynamics Workbench: a tool to examine dynamic expression profiling of therapeutic response in the NCI-60 cell line panel. Cancer Res. 78, 6807-6817. https://doi.org/10.1158/0008-5472.CAN-18-0989
  23. Park, C., Lee, Y., Je, S., Chang, S., Kim, N., Jeong, E., and Yoon, S. (2019). Overexpression and selective anticancer efficacy of ENO3 in STK11 mutant lung cancers. Mol. Cells 42, 804-809. https://doi.org/10.14348/molcells.2019.0099
  24. Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1-6. https://doi.org/10.1016/s1476-5586(04)80047-2
  25. Shen, Y., Liu, J., Zhang, L., Dong, S., Zhang, J., Liu, Y., Zhou, H., and Dong, W. (2019). Identification of potential biomarkers and survival analysis for head and neck squamous cell carcinoma using bioinformatics strategy: a study based on TCGA and GEO datasets. Biomed Res. Int. 2019, 7376034.
  26. Shi, B., Ding, J., Qi, J., and Gu, Z. (2021). Characteristics and prognostic value of potential dependency genes in clear cell renal cell carcinoma based on a large-scale CRISPR-Cas9 and RNAi screening database DepMap. Int. J. Med. Sci. 18, 2063-2075. https://doi.org/10.7150/ijms.51703
  27. Yang, D., Khan, S., Sun, Y., Hess, K., Shmulevich, I., Sood, A.K., and Zhang, W. (2011). Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557-1565. https://doi.org/10.1001/jama.2011.1456
  28. Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(Database issue), D955-D961.
  29. Zhong, Z., Hong, M., Chen, X., Xi, Y., Xu, Y., Kong, D., Deng, J., Li, Y., Hu, R., Sun, C., et al. (2020). Transcriptome analysis reveals the link between lncRNA-mRNA co-expression network and tumor immune microenvironment and overall survival in head and neck squamous cell carcinoma. BMC Med. Genomics 13, 57. https://doi.org/10.1186/s12920-020-0707-0