Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0169

Q-omics: Smart Software for Assisting Oncology and Cancer Research  

Lee, Jieun (Department of Biological Sciences, Sookmyung Women's University)
Kim, Youngju (Department of Biological Sciences, Sookmyung Women's University)
Jin, Seonghee (Department of Biological Sciences, Sookmyung Women's University)
Yoo, Heeseung (Department of Biological Sciences, Sookmyung Women's University)
Jeong, Sumin (Department of Biological Sciences, Sookmyung Women's University)
Jeong, Euna (Research Institute of Women's Health, Sookmyung Women's University)
Yoon, Sukjoon (Department of Biological Sciences, Sookmyung Women's University)
Abstract
The rapid increase in collateral omics and phenotypic data has enabled data-driven studies for the fast discovery of cancer targets and biomarkers. Thus, it is necessary to develop convenient tools for general oncologists and cancer scientists to carry out customized data mining without computational expertise. For this purpose, we developed innovative software that enables user-driven analyses assisted by knowledge-based smart systems. Publicly available data on mutations, gene expression, patient survival, immune score, drug screening and RNAi screening were integrated from the TCGA, GDSC, CCLE, NCI, and DepMap databases. The optimal selection of samples and other filtering options were guided by the smart function of the software for data mining and visualization on Kaplan-Meier plots, box plots and scatter plots of publication quality. We implemented unique algorithms for both data mining and visualization, thus simplifying and accelerating user-driven discovery activities on large multiomics datasets. The present Q-omics software program (v0.95) is available at http://qomics.sookmyung.ac.kr.
Keywords
biomarker; cancer bioinformatics; immune infiltrate; Kaplan-Meier plot; omics data mining; smart software;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iorio, F., Knijnenburg, T.A., Vis, D.J., Bignell, G.R., Menden, M.P., Schubert, M., Aben, N., Goncalves, E., Barthorpe, S., Lightfoot, H., et al. (2016). A landscape of pharmacogenomic interactions in cancer. Cell 166, 740-754.   DOI
2 Kim, N., Yim, H.Y., He, N., Lee, C.J., Kim, J.H., Choi, J.S., Lee, H.S., Kim, S., Jeong, E., Song, M., et al. (2016). Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci. Rep. 6, 29721.   DOI
3 Kitsou, M., Ayiomamitis, G.D., and Zaravinos, A. (2020). High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int. J. Oncol. 57, 237-248.   DOI
4 Li, Y., Umbach, D.M., Krahn, J.M., Shats, I., Li, X., and Li, L. (2021). Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics 22, 272.   DOI
5 Meyers, R.M., Bryan, J.G., McFarland, J.M., Weir, B.A., Sizemore, A.E., Xu, H., Dharia, N.V., Montgomery, P.G., Cowley, G.S., Pantel, S., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779-1784.   DOI
6 Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1-6.   DOI
7 Shen, Y., Liu, J., Zhang, L., Dong, S., Zhang, J., Liu, Y., Zhou, H., and Dong, W. (2019). Identification of potential biomarkers and survival analysis for head and neck squamous cell carcinoma using bioinformatics strategy: a study based on TCGA and GEO datasets. Biomed Res. Int. 2019, 7376034.
8 Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(Database issue), D955-D961.
9 Yang, D., Khan, S., Sun, Y., Hess, K., Shmulevich, I., Sood, A.K., and Zhang, W. (2011). Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557-1565.   DOI
10 Li, W., Wang, H., Ma, Z., Zhang, J., Ou-Yang, W., Qi, Y., and Liu, J. (2019). Multi-omics analysis of microenvironment characteristics and immune escape mechanisms of hepatocellular carcinoma. Front. Oncol. 9, 1019.   DOI
11 Shi, B., Ding, J., Qi, J., and Gu, Z. (2021). Characteristics and prognostic value of potential dependency genes in clear cell renal cell carcinoma based on a large-scale CRISPR-Cas9 and RNAi screening database DepMap. Int. J. Med. Sci. 18, 2063-2075.   DOI
12 Monks, A., Zhao, Y., Hose, C., Hamed, H., Krushkal, J., Fang, J., Sonkin, D., Palmisano, A., Polley, E.C., Fogli, L.K., et al. (2018). The NCI Transcriptional Pharmacodynamics Workbench: a tool to examine dynamic expression profiling of therapeutic response in the NCI-60 cell line panel. Cancer Res. 78, 6807-6817.   DOI
13 Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607.   DOI
14 He, N., Kim, N., Song, M., Park, C., Kim, S., Park, E.Y., Yim, H.Y., Kim, K., Park, J.H., Kim, K.I., et al. (2014). Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol. Cancer Ther. 13, 2463-2473.   DOI
15 Jeong, E., Lee, Y., Kim, Y., Lee, J., and Yoon, S. (2020). Analysis of cross-association between mRNA expression and RNAi efficacy for predictive target discovery in colon cancers. Cancers (Basel) 12, 3091.   DOI
16 Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., and Liu, X.S. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48(W1), W509-W514.   DOI
17 McFarland, J.M., Ho, Z.V., Kugener, G., Dempster, J.M., Montgomery, P.G., Bryan, J.G., Krill-Burger, J.M., Green, T.M., Vazquez, F., Boehm, J.S., et al. (2018). Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 9, 4610.   DOI
18 Park, C., Lee, Y., Je, S., Chang, S., Kim, N., Jeong, E., and Yoon, S. (2019). Overexpression and selective anticancer efficacy of ENO3 in STK11 mutant lung cancers. Mol. Cells 42, 804-809.   DOI
19 Zhong, Z., Hong, M., Chen, X., Xi, Y., Xu, Y., Kong, D., Deng, J., Li, Y., Hu, R., Sun, C., et al. (2020). Transcriptome analysis reveals the link between lncRNA-mRNA co-expression network and tumor immune microenvironment and overall survival in head and neck squamous cell carcinoma. BMC Med. Genomics 13, 57.   DOI
20 Eckstein, M., Strissel, P., Strick, R., Weyerer, V., Wirtz, R., Pfannstiel, C., Wullweber, A., Lange, F., Erben, P., Stoehr, R., et al. (2020). Cytotoxic T-cell-related gene expression signature predicts improved survival in muscle-invasive urothelial bladder cancer patients after radical cystectomy and adjuvant chemotherapy. J. Immunother. Cancer 8, e000162.   DOI
21 Cao, R., Yuan, L., Ma, B., Wang, G., Qiu, W., and Tian, Y. (2020). An EMT-related gene signature for the prognosis of human bladder cancer. J. Cell. Mol. Med. 24, 605-617.   DOI
22 Aran, D., Hu, Z., and Butte, A.J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220.   DOI
23 Biswas, A., Haldane, A., Arnold, E., and Levy, R.M. (2019). Epistasis and entrenchment of drug resistance in HIV-1 subtype B. Elife 8, e50524.   DOI
24 Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113-1120.   DOI
25 Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404.   DOI
26 Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau, K.W., Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012). Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570-575.   DOI
27 Hong, Y., Kim, N., Li, C., Jeong, E., and Yoon, S. (2017). Patient sample-oriented analysis of gene expression highlights extracellular signatures in breast cancer progression. Biochem. Biophys. Res. Commun. 487, 307-312.   DOI
28 Ghandi, M., Huang, F.W., Jane-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R., 3rd, Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503-508.   DOI
29 Guan, N.N., Zhao, Y., Wang, C.C., Li, J.Q., Chen, X., and Piao, X. (2019). Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol. Ther. Nucleic Acids 17, 164-174.   DOI