• Title/Summary/Keyword: smart layer

Search Result 468, Processing Time 0.022 seconds

Analysis of the electrical properties of pork to discriminate between fresh and frozen/ thawed pork

  • Jun-Hwi, So;Seon Ho, Hwang;Sung Yong, Joe;Seung Hyun, Lee
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.739-751
    • /
    • 2021
  • The thawing process is usually essential for imported pork because this product is typically distributed frozen. Consumers prefer fresh pork because discoloration, nutrient spills, and microbial contamination are high during the thawing process. The illegal act of selling frozen pork by disguising it as fresh pork through various methods can occur for the benefit of the difference in the sales price. However, there is some difficulty in securing systematic and objective data, as sensory tests are generally performed on imported pork. In the experiment conducted here, the electrical conductivity and dielectric properties of pork neck and pork belly products were measured. The amounts of change before and after freezing were compared through a statistical analysis, and a new method for determining frozen meat was proposed based on the analysis results. The weight was reduced compared to that before freezing due to the outflow of drips from the thawing process, but there was no difference in the drip loss level due to the thawing method. Vacuum packaging was found to lead to more drip loss than regular packaging, but the difference was not statistically significant. Frozen pork neck meat can be determined by measuring the electrical conductivity in the lean parts and the dielectric characteristic in the fatty parts. Frozen pork belly is determined by measuring the dielectric constant of the part closest to the outer fat layer.

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Adaptive Vibration Control of Smart Composite Structures Using Neuro-Controller (신경망 제어기를 이용한 지능 복합재 구조물의 적응 진동 제어)

  • Youn, Se-Hyun;Han, Jae-Hong;Lee, In
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.832-840
    • /
    • 1998
  • Experimental studies on the adaptive vibration control of composite beams have been performed using a piezoelectric actuator and the neuro-controller. The variations in natural frequencies of the specimen and the actuation characteristics of the piezoelectric actuator according to the delamination in the bonding layer have been studied. In addition, the simulation of adaptive vibration control has been performed for the composite specimens with delaminated piezoelectric actuator using neuro-controller. The hardware for the adaptive vibration control experiment was prepared. A DSP(digital signal processor) has been used as a digital controller. Using neuro-controller, the adaptive vibration control experiment has been performed. The vibration control results using the neuro-controller show that the present neuro-controller has good performance and robustness with the system parameter variations.

  • PDF

A Study on the Design and Electrical Characteristics of High Performance Smart Power Device (고성능 Smart Power 소자 설계 및 전기적 특성에 관한 연구)

  • Ku, Yong-Seo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the high performance BCD device structure which satisfies the high voltage and fast switching speed characteristics is devised. Through the process and device simulation, optimal process spec. & device spec. are designed. We adapt double buried layer structure, trench isolation process, n-/p-drift region formation and shallow junction technology to optimize an electrical property as mentioned above. This I.C consists of 20V level high voltage bipolar npn/pnp device, 60V level LDMOS device, a few Ampere level VDMOS, 20V level CMOS device and 5V level logic CMOS.

  • PDF

Development of technology to improve information accessibility of information vulnerable class using crawling & clipping

  • Jeong, Seong-Bae;Kim, Kyung-Shin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.99-107
    • /
    • 2018
  • This study started from the public interest purpose to help accessibility for the information acquisition of the vulnerable groups due to visual difficulties such as the elderly and the visually impaired. In this study, the server resources are minimized and implemented in most of the user smart phones. In addition, we implement a method to gather necessary information by collecting only pattern information by utilizing crawl & clipping without having to visit the site of the information of the various sites having the data necessary for the user, and to have it in the server. Especially, we applied the TTS(Text-To-Speech) service composed of smart phone apps and tried to develop a unified customized information collection service based on voice-based information collection method.

Analysis of the Capacity Region for Two-tier Spatial Diversified Wireless Mesh Networks

  • Torregoza, John Paul;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1697-1705
    • /
    • 2008
  • Several studies made for wireless mesh networks aim to optimize the capacity for wireless networks. Aside from protocol improvements, researches were also done on the physical layer particularly on modulation techniques and antenna efficiency schemes. This paper is concerned with the capacity improvements derived from using spatial diversity with smart adaptive array antennas. The use of spatial diversity, which has been widely proposed for use in cellular networks in order to lessen frequency re-use, can be used in mesh networks both to minimize co-channel interference (CCI) and enable multiple transmissions. This paper aims to study the capacity region and bounds in using smart antennas for single-channel multi-radio systems in relation to the number of spatial diversity or sectors as defined by the beam angle $\beta$.

  • PDF

The Ethics of Artificial Intelligence and Robotization in Tourism and Hospitality - A Conceptual Framework and Research Agenda

  • Ivanov, Stanislav;Umbrello, Steven
    • Journal of Smart Tourism
    • /
    • v.1 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • The impacts that AI and robotics systems can and will have on our everyday lives are already making themselves manifest. However, there is a lack of research on the ethical impacts and means for amelioration regarding AI and robotics within tourism and hospitality. Given the importance of designing technologies that cross national boundaries, and given that the tourism and hospitality industry is fundamentally predicated on multicultural interactions, this is an area of research and application that requires particular attention. Specifically, tourism and hospitality have a range of context-unique stakeholders that need to be accounted for in the salient design of AI systems is to be achieved. This paper adopts a stakeholder approach to develop the conceptual framework to centralize human values in designing and deploying AI and robotics systems in tourism and hospitality. The conceptual framework includes several layers - 'Human-human-AI' interaction level, direct and indirect stakeholders, and the macroenvironment. The ethical issues on each layer are outlined as well as some possible solutions to them. Additionally, the paper develops a research agenda on the topic.

A Study on an Intelligent Control of Manufacturing with Dual Arm Robot Based on Neural Network for Smart Factory Implementation (스마트팩토리 실현을 위한 뉴럴네트워크 기반 이중 아암을 갖는 제조용 로봇의 지능제어에 관한 연구)

  • Jung, Kum Jun;Kim, Dong Ho;Kim, Hee Jin;Jang, Gi Wong;Han, Sung Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.351-361
    • /
    • 2021
  • This study proposes an intelligent control of manufacturing robot with dual arm based on neural network for smart factory implementation. In the control method of robot system, the perspectron structure of single layer based on neural network is useful for simple computation. However, the limitations of computation are emerging in areas that require complex computations. To overcome limitation of complex parameters computation a new intelligent control technology is proposed in this study. The performance is illustrated by simulation and experiments for manufacturing robot dual arm robot with eight axes.

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.