• Title/Summary/Keyword: smart ITS

Search Result 2,520, Processing Time 0.026 seconds

A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems (라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안)

  • Jun, Hwan-Don;Kim, Joong-Hoon;Cho, Moon-Soo;Baek, Chun-Woo;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.61-66
    • /
    • 2008
  • As the water distribution system which is one of the critical lifeline system is deteriorated and pipe failures occur frequently, the more efficient pipe monitoring system becomes a critical issue in the water industry. One of the pipe monitoring systems is called "Smart-pipe System" which is permanent, comprehensive and an automated SIM (Structural Integrity Monitoring) system and has superiorities to existing monitoring system. To implement a smart-pipe system on a water distribution system, assessment of its indirect benefit obtaining from smartpipe such as the ratio of preventing water main failures must be preceded. However, only some researches on this field have been performed. In this paper, the concept of smart-pipe system is compared with the current monitoring systems for a water distribution system, and a method to quantify its benefit using the inconvenient time for customers is suggested. The suggested method was applied to a real water distribution system to estimate its applicability and benefit.

Analysis for Teaching and Learning Methods in K-12 Smart Education (초.중.고에서의 스마트교육 교수.학습 유형 분석)

  • Han, Hae-Sook;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.51-58
    • /
    • 2013
  • There is an increasing discussion about new teaching and learning methods in smart education environment due to the dissemination of smart devices. In this trend, in order to understand the smart education system, this study analyzed the domestic and foreign cases in K-12 smart education based on CTLA (Creation Teaching Learning Assessment) model through access to educational contents, environments, methods, and its curriculums. The teaching and learning methods in smart education are analyzed in foreign cases, domestic cases, and teaching-learning models presenting the positive part of the currently being implemented smart education and the further research for its improvement. Accordingly this study contributes to the specific formulation and successful realization of smart education.

Effects of Smart Factory Quality Characteristics and Dynamic Capabilities on Business Performance: Mediating Effect of Recognition Response

  • CHO, Ik-Jun;KIM, Jin-Kwon;YANG, Hoe-Chang;AHN, Tony-DongHui
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.12
    • /
    • pp.17-28
    • /
    • 2020
  • Purpose: The purpose of this study is to confirm the strategic direction of the firm regarding the capabilities of the organization and its employees in order to increase the utilization and business performance of employees by that introduce smart factories in the domestic manufacturing industry. Research design, data, and methodology: This study derived a structured research model to confirm the mediating effect of recognition responses between the quality characteristics of smart factories and dynamic capabilities. For the analysis, a total of 143 valid questionnaires were used for 200 companies that introduced smart factories from domestic SME's. Results: Quality Characteristics of Smart Factory and Dynamic Capabilities had a statistically significant effect on Usefulness. Recognition Response had a statistically mediating on the relationship between quality characteristics of smart factory and business performance. Recognition Response had a statistically significant effect on business performance. Conclusions: It suggests that firms introducing smart factory reflect them in their empowerment strategic because the recognition responses of its employees differ according to the quality characteristics and dynamic capabilities of smart factories. It also means that the information derived from the smart factory system is useful and effective to business performance and employees.

An Analysis on the Change of Convergence in Smart City from Industrial Perspectives (스마트시티 산업의 융합변화 분석)

  • Jo, Sung Su;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.4
    • /
    • pp.61-74
    • /
    • 2018
  • This study aims to analyze the convergence change of smart city industries in Korea. Industries of Smart city can be defined ICTs and Knowledge embedded construction industry. The input output model and structural path analysis have been done using the input output tables published by Bank of Korea in 1980 and 2014. GDP deflator was applied to the input output tables. 403 industries were reclassified into 27 industries and 8 industries categories: Agriculture and Mining(AM), Non-IT Manufacture(NITM), IT Manufacture(ITM), Energy Supply(EnS), Construction as smart city(C), IT Service(ITS), Knowledge Service(KS), Etc. Service(EtS). The results are as follows; First, the input output coefficient analysis showed that The information and communication service industry(ITS) and the energy supply industry(EnS) have increased input to the construction industry(C). On the other hands, knowledge service industry(KS) and etc. service industries(EtS) decreased. Second, the multiplier analysis revealed that construction industry(C) led by smart city had a great influence on ITS, EnS, ITM and NITM directly and indirectly. Furthermore, The IT industry had the biggest change from 1980 to 2014. Third, the smart city industry has created a new convergence of 117, and it has been leading to segmentation of the structure. Change of convergence has been proceeding mainly in the ITS and EnS, NITM, ITM industries.

Optimal Planning of Smart Energy System and its Applications (스마트 에너지 시스템 최적설계 및 적용사례)

  • Kim, Ki-Young;Seo, Seok-Ho;Sung, Jin-Il;Seo, Hyon-Uk;Oh, Si-Doek;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3359-3364
    • /
    • 2007
  • The smart energy system is the integrated power system in which the power components including central station generation, distributed generation, renewable power generation, energy storage, and communications and controls are complexly connected with each other. In smart energy system, it is very important how to configure the diverse power generations and how to determine the operation mode of the chosen components with economic feasibility. In this study, we introduce the optimal planning method based on both economic feasibility and load profiles and its applications for the smart energy system in apartment. This method was considered very useful to determine the configuration and to decide the optimal operation mode of the smart energy system.

  • PDF

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • Kim, Jae-Hwan;Kang, Bu-Byoung;Kim, Kyeong-Jin;Chung, Heung-Chai;Choi, Sung-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.252-256
    • /
    • 2003
  • Smart materials can adapt to changes of environment like living organs in nature such that they can maximize the performance and minimize the maintenance expense of engineering systems. Such materials have been paid attention ten years ago and applied in the area of industry, aerospace, transportation and civil structures. This paper summarizes smart material technology and shows some application examples in railway vehicles. Also, its future of smart material technology in railway vehicle technology is envisaged based on its possibility and practical aspect.

An Exploratory Research for Development of Design of Sensor-based Smart Clothing - Focused on the Healthcare Clothing Based on Bio-monitoring Technology - (센서 기반형 스마트 의류의 디자인 개발을 위한 탐색적 연구 - 생체 신호 센서 기술에 기반한 건강관리용 의류를 중심으로 -)

  • Cho Ha-Kyung;Lee Joo-Hyeon;Lee Chung-Keun;Lee Myoung-Ho
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.141-150
    • /
    • 2006
  • Since the late 1990s, 'smart clothing' has been developed in a various way to meet the need of users and to help people more friendly interact with computers through its various designs. Recently, various applications of smart clothing concept have been presented by researchers. Among the various applications, smart clothing with a health care system is most likely to gain the highest demand rate in the market. Among them, smart clothing for check-up of health status with its sensors is expected to sell better than other types of smart clothing on the market. Under this circumstance, research and development for this field have been accelerated furthermore. This research institution has invented biometric sensors suitable for the smart clothing, and has developed a design to diagnose various diseases such as cardiac disorder and respiratory diseases. The newly developed smart clothing in this study looks similar to the previous inventions, but people can feel more comfortable in it with its fabric interaction built in it. When people wear it, the health status of the wearers is diagnosed and its signals are transmitted to the connected computer so the result can be easily monitored in real time. This smart clothing is a new kind of clothing as a supporting system for preventing various cardiac disorder and respiratory diseases using its biometric sensor built-in, and is also an archetype to show how smart clothing can work on the market.

  • PDF

Development of IEEE 1451 based Smart Module for In-vehicle Networking Systems (IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.155-163
    • /
    • 2003
  • As vehicles become more intelligent for convenience and safety of drivers, the in-vehicle networking(IVN) systems and smart modules are essential components for intelligent vehicles. However, for wider application of smart modules and IVN's, the following two problems should be overcome. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports all the existing IVN protocols, the smart module must be independent of the type of networking protocols. Secondly, when the smart module needs to be replaced due to its failure, only the transducer should be replaced these without the replacement of the microprocessor and network transceiver. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based smart module. More specifically, a smart module for DC motor control has been developed. The module has been evaluated for its delay caused by the IEEE 1451 architecture. In addition, the time required for transducer replacement has been measured.

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

A Study on Development Type and Land-use Model of Smart Green Multi Complex (스마트 그린 복합단지의 개발유형 및 토지이용 모형에 관한 연구)

  • Park, Cheon-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5971-5978
    • /
    • 2013
  • The aim of the study is to suggest the development type and the land-use model of smart green multi complexes focused on the lesson for future smart green complex in Korea. For the study, the concept and the development aspects are reviewed as a theoretical research and the development types of smart green multi complexes are surveyed based on its functional distribution. The types of multi-complexes are classified in three categories of small city, neighborhood and small housing estate regarding its size. As a result of the research, the land-use model of smart green multi complexes according to its types are suggested under consideration of Korean situation.